Login

Moose
GP: 20 | W: 10 | L: 7 | OTL: 3 | P: 23
GF: 81 | GA: 83 | PP%: 24.14% | PK%: 65.28%
GM : Pascal Verret | Morale : 39 | Team Overall : 63
Next Games #243 vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Admirals
7-7-3, 17pts
4
FINAL
5 Moose
10-7-3, 23pts
Team Stats
W1StreakW1
3-4-2Home Record5-4-0
4-3-1Away Record5-3-3
3-4-3Last 10 Games5-4-1
3.88Goals Per Game4.05
4.41Goals Against Per Game4.15
16.22%Power Play Percentage24.14%
77.94%Penalty Kill Percentage65.28%
Crunch
7-7-4, 18pts
3
FINAL
5 Moose
10-7-3, 23pts
Team Stats
L1StreakW1
4-3-2Home Record5-4-0
3-4-2Away Record5-3-3
2-6-2Last 10 Games5-4-1
3.89Goals Per Game4.05
4.44Goals Against Per Game4.15
24.18%Power Play Percentage24.14%
76.39%Penalty Kill Percentage65.28%
Moose
10-7-3, 23pts
2022-01-14
Monsters
10-7-1, 21pts
Team Stats
W1StreakL4
5-4-0Home Record5-3-1
5-3-3Away Record5-4-0
5-4-1Last 10 Games4-6-0
4.05Goals Per Game4.17
4.15Goals Against Per Game3.83
24.14%Power Play Percentage25.88%
65.28%Penalty Kill Percentage80.25%
Moose
10-7-3, 23pts
2022-01-16
Wolfpack
12-7-0, 24pts
Team Stats
W1StreakOTW1
5-4-0Home Record7-2-0
5-3-3Away Record5-5-0
5-4-1Last 10 Games8-2-0
4.05Goals Per Game4.16
4.15Goals Against Per Game3.32
24.14%Power Play Percentage25.00%
65.28%Penalty Kill Percentage85.56%
Thunderbirds
9-5-3, 21pts
2022-01-17
Moose
10-7-3, 23pts
Team Stats
SOL1StreakW1
6-2-1Home Record5-4-0
3-3-2Away Record5-3-3
6-2-2Last 10 Games5-4-1
3.88Goals Per Game4.05
3.18Goals Against Per Game4.15
21.74%Power Play Percentage24.14%
83.91%Penalty Kill Percentage65.28%
Team Leaders
Goals
Frank Vatrano
12
Assists
Troy Stetcher
19
Points
Miro Aaltonen
27
Plus/Minus
Erik Cernak
9
Wins
Filip Gustavsson
6
Save Percentage
Filip Gustavsson
0.901

Team Stats
Goals For
81
4.05 GFG
Shots For
653
32.65 Avg
Power Play Percentage
24.1%
21 GF
Offensive Zone Start
38.0%
Goals Against
83
4.15 GAA
Shots Against
672
33.60 Avg
Penalty Kill Percentage
65.3%
25 GA
Defensive Zone Start
33.8%
Team Info

General ManagerPascal Verret
CoachAdams Oates
DivisionThayer-Tutt
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,784
Season Tickets300


Roster Info

Pro Team33
Farm Team18
Contract Limit51 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Iiro Pakarinen (R)X100.007434717573767476787874616866623740720251650,000$
2Miro Aaltonen (R)X100.0069298187747566797177736276535043447202311,250,000$
3Frank Vatrano (R)X100.008845697774667876627565696550486044700221500,000$
4Nathan Walker (R)X100.006831707569766676707370617346485544680222750,000$
5Dominik Kahun (R)X100.005530806757757371848167535849446137660211500,000$
6Nikolay Goldobin (R)X100.006137807366675478616867657742426144660202750,000$
7Oskar Lindblom (R)X100.006944776658676669716269516742426043630202500,000$
8Trevor Moore (R)X100.006850786856706661746367547146466524630212500,000$
9Michael McLeod (R)X100.004537698053574580566167587140407232620182500,000$
10Rem Pitlick (R)X100.005529657959685177696056557042427336620192500,000$
11Carl Grundstrom (R)X100.006552815762676159605760596341438029600192500,000$
12Pierre-Luc Dubois (R)X100.007036665682537356456858584340408644580182500,000$
13Troy Stetcher (R)X100.006532758871567682428857735255465543710221500,000$
14Ludwig Bystrom (R)X100.006923767668667275467155755553444544690221600,000$
15Vladislav Gavrikov (R)X100.006745826368706567557360735853465833680211500,000$
16Erik Cernak (R)X100.007435666377795549326758714343427044650191500,000$
17Matthew Benning (R)X100.006522786664696362466757695146465033640221400,000$
18Sami Niku (R)X100.005137637553587370316961543444435636610201500,000$
Scratches
1Chase De Leo (R)X100.006230796761666963667871475843436330640202750,000$
2Jeremy Bracco (R)X100.005431726253656970817864415441416340620191500,000$
3Julien Gauthier (R)X100.006028755372585863576772465943416320600192500,000$
4Mitchell Stephens (R)X100.004725886864776246696256594441416719580191500,000$
5Nathan Bastian (R)X100.004738715559695964776257475741435920580192500,000$
6Max Jones (R)X100.006539656367507158456456524340406920570182500,000$
7David Kase (R)X100.006030585653556356595762426141415520550191500,000$
8Tim Gettinger (R)X100.005427634758565359495660296340406820520182500,000$
9Mirco Mueller (R)X76.716922816971737369537260805350445427700211700,000$
10Jesse Graham (R)X100.005440707764576666466857694644444419630221450,000$
11Josh Mahura (R)X100.004934736952535673236550593640406719580182500,000$
TEAM AVERAGE99.20623473686465656758696258584544613363
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Gustavsson (R)99.00586269574673745046735840408242580182500,000$
2Emil Larmi (R)100.00665166435372725546675840408335580202500,000$
Scratches
1Magnus Hellberg100.00776469797669707575727864583432720251950,000$
2Joey Daccord100.00646564454872725150655143426220580202550,000$
TEAM AVERAGE99.7566616756567272585469614745653262
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adams Oates53568572375954CAN522950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Miro AaltonenMoose (Win)C20101727-340323073224513.70%837718.87571215770000173049.89%463164001.4303000221
2Frank VatranoMoose (Win)RW19129211200723068183217.65%1338420.2443717730112451026.92%26187001.0901000112
3Troy StetcherMoose (Win)D162192138027344524224.44%2739824.921671365022144000.00%01611001.0500000031
4Nathan WalkerMoose (Win)LW201010203140332258133817.24%737818.9032511681011220162.50%32114001.0601000111
5Iiro PakarinenMoose (Win)RW1511718-1160391547162523.40%829619.7952711460000151051.35%37142001.2100000211
6Nikolay GoldobinMoose (Win)LW208513840212152122415.38%531615.810004281012451138.55%83128000.8202000101
7Dominik KahunMoose (Win)C186511-220193142202214.29%431817.67112248000031154.22%33232000.6900000020
8Jeremy BraccoMoose (Win)RW164593401242691715.38%217210.7700000000031250.00%471001.0400000011
9Oskar LindblomMoose (Win)LW193694201362471512.50%11899.98000000000300100.00%440000.9500000011
10Michael McLeodMoose (Win)C1454902012831111916.13%71289.1700000000001053.70%5432001.4012000101
11Ludwig BystromMoose (Win)D20167-61803031328123.12%2444522.26112260000039000.00%0814000.3100000000
12Matthew BenningMoose (Win)D18077220102113520.00%1123813.270000000005000.00%018000.5900000000
13Erik CernakMoose (Win)D20055980203516660.00%2637118.57000118000053000.00%039000.2700000000
14Mirco MuellerMoose (Win)D13235-11401819178611.76%2229022.36000140000020000.00%039000.3400000100
15Chase De LeoMoose (Win)C10044300848680.00%111311.3100000000170048.00%5052000.7100000000
16Vladislav GavrikovMoose (Win)D200442001531324100.00%3745722.87000373000043000.00%0710000.1701000000
17Rem PitlickMoose (Win)RW16123040910217174.76%11308.1300000000010035.29%5142000.4600000000
18Sami NikuMoose (Win)D120223120756530.00%617314.4902211900004000.00%013000.2300000000
19Pierre-Luc DuboisMoose (Win)LW19112040141113337.69%720010.5500003000000016.67%623000.2000000001
20Trevor MooreMoose (Win)C32021202041250.00%0258.4600000000000053.85%1310001.5800000000
21Carl GrundstromMoose (Win)RW12011-2001143250.00%21028.580000000007000.00%112000.1900000000
22Jesse GrahamMoose (Win)D1000100000000.00%055.550000000000000.00%001000.0000000000
23Jordan MartinookJetsLW1000-200302000.00%02121.4200003000060027.27%1100000.0000000000
24Julien GauthierMoose (Win)RW2000100120010.00%03015.14000000000000100.00%100000.0000000000
25Josh MahuraMoose (Win)D3000000110000.00%2289.330000000000000.00%000000.0000000000
26Max JonesMoose (Win)LW1000000000000.00%155.450000000000000.00%000000.0000000000
Team Total or Average3487812220017130042937563320733412.32%222560016.092024448162923573909549.49%1168140104000.7111000091211
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Filip GustavssonMoose (Win)106400.9013.386040034345200111.0003106000
2Emil LarmiMoose (Win)53110.8703.74305001914683000.500459000
3Magnus HellbergMoose (Win)51220.8505.31305002718089000.500255000
Team Total or Average2010730.8813.9512140080671372110.66792020000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Carl GrundstromMoose (Win)RW191997-01-01Yes194 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Chase De LeoMoose (Win)C201996-01-01Yes179 Lbs5 ft9NoNoNo2Pro & Farm750,000$585,000$0$0$No750,000$
David KaseMoose (Win)RW191997-01-01Yes169 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Dominik KahunMoose (Win)C211995-01-01Yes175 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Emil LarmiMoose (Win)G201996-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Erik CernakMoose (Win)D191997-01-01Yes233 Lbs6 ft3NoNoNo1Pro & Farm500,000$390,000$0$0$No
Filip GustavssonMoose (Win)G181998-01-01Yes183 Lbs6 ft2NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Frank VatranoMoose (Win)RW221994-01-01Yes197 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Iiro PakarinenMoose (Win)RW251991-01-01Yes215 Lbs6 ft1NoNoNo1Pro & Farm650,000$507,000$0$0$No
Jeremy BraccoMoose (Win)RW191997-01-01Yes185 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Jesse GrahamMoose (Win)D221994-01-01Yes170 Lbs5 ft11NoNoNo1Pro & Farm450,000$351,000$0$0$No
Joey DaccordMoose (Win)G201996-01-01No197 Lbs6 ft2NoNoNo2Pro & Farm550,000$429,000$0$0$No600,000$
Josh MahuraMoose (Win)D181998-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Julien GauthierMoose (Win)RW191997-01-01Yes227 Lbs6 ft4NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Ludwig BystromMoose (Win)D221994-01-01Yes169 Lbs6 ft0NoNoNo1Pro & Farm600,000$468,000$0$0$No
Magnus HellbergMoose (Win)G251991-01-01No185 Lbs6 ft5NoNoNo1Pro & Farm950,000$741,000$0$0$No
Matthew BenningMoose (Win)D221994-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm400,000$312,000$0$0$No
Max JonesMoose (Win)LW181998-01-01Yes220 Lbs6 ft1NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Michael McLeodMoose (Win)C181998-01-01Yes187 Lbs6 ft2NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Mirco Mueller (Out of Payroll)Moose (Win)D211995-01-01Yes185 Lbs6 ft4NoNoNo1Pro & Farm700,000$546,000$0$0$Yes
Miro AaltonenMoose (Win)C231993-01-01Yes185 Lbs5 ft10NoNoNo1Pro & Farm1,250,000$975,000$0$0$No
Mitchell StephensMoose (Win)C191997-01-01Yes193 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Nathan BastianMoose (Win)RW191997-01-01Yes205 Lbs6 ft4NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Nathan WalkerMoose (Win)LW221994-01-01Yes186 Lbs5 ft9NoNoNo2Pro & Farm750,000$585,000$0$0$No850,000$
Nikolay GoldobinMoose (Win)LW201996-01-01Yes196 Lbs5 ft11NoNoNo2Pro & Farm750,000$585,000$0$0$No850,000$
Oskar LindblomMoose (Win)LW201996-01-01Yes191 Lbs6 ft1NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Pierre-Luc DuboisMoose (Win)LW181998-01-01Yes218 Lbs6 ft3NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Rem PitlickMoose (Win)RW191997-01-01Yes196 Lbs5 ft11NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Sami NikuMoose (Win)D201996-01-01Yes176 Lbs6 ft1NoNoNo1Pro & Farm500,000$390,000$0$0$No
Tim GettingerMoose (Win)LW181998-01-01Yes220 Lbs6 ft6NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Trevor MooreMoose (Win)C211995-01-01Yes174 Lbs5 ft10NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Troy StetcherMoose (Win)D221994-01-01Yes186 Lbs5 ft10NoNoNo1Pro & Farm500,000$390,000$0$0$No
Vladislav GavrikovMoose (Win)D211995-01-01Yes213 Lbs6 ft3NoNoNo1Pro & Farm500,000$390,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3320.27193 Lbs6 ft11.52569,697$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nathan WalkerMiro AaltonenIiro Pakarinen40122
2Nikolay GoldobinDominik KahunFrank Vatrano30122
3Oskar LindblomTrevor MooreRem Pitlick20122
4Pierre-Luc DuboisMichael McLeodCarl Grundstrom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherLudwig Bystrom40122
2Vladislav GavrikovErik Cernak30122
3Matthew BenningSami Niku20122
4Troy StetcherLudwig Bystrom10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nathan WalkerMiro AaltonenIiro Pakarinen60122
2Nikolay GoldobinDominik KahunFrank Vatrano40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherLudwig Bystrom60122
2Vladislav GavrikovErik Cernak40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Iiro PakarinenMiro Aaltonen60122
2Frank VatranoNathan Walker40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherLudwig Bystrom60122
2Vladislav GavrikovErik Cernak40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Iiro Pakarinen60122Troy StetcherLudwig Bystrom60122
2Miro Aaltonen40122Vladislav GavrikovErik Cernak40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Iiro PakarinenMiro Aaltonen60122
2Frank VatranoNathan Walker40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherLudwig Bystrom60122
2Vladislav GavrikovErik Cernak40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nathan WalkerMiro AaltonenIiro PakarinenTroy StetcherLudwig Bystrom
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nathan WalkerMiro AaltonenIiro PakarinenTroy StetcherLudwig Bystrom
Extra Forwards
Normal PowerPlayPenalty Kill
Trevor Moore, Oskar Lindblom, Rem PitlickTrevor Moore, Oskar LindblomFrank Vatrano
Extra Defensemen
Normal PowerPlayPenalty Kill
Matthew Benning, Sami Niku, Vladislav GavrikovMatthew BenningSami Niku, Vladislav Gavrikov
Penalty Shots
Iiro Pakarinen, Miro Aaltonen, Frank Vatrano, Nathan Walker, Nikolay Goldobin
Goalie
#1 : Filip Gustavsson, #2 : Emil Larmi


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals20100010810-220100010810-20000000000020.500813210023282926321722121015792616433133.33%8275.00%022145648.46%19740548.64%17433951.33%423232431187360183
2Barracuda411000022325-221100000990200000021416-240.50023355800232829213221722121015147583810020735.00%19857.89%122145648.46%19740548.64%17433951.33%423232431187360183
3Condors3210000012111110000005412110000077040.667122032002328292892172212101510039225916318.75%11463.64%022145648.46%19740548.64%17433951.33%423232431187360183
4Crunch11000000532110000005320000000000021.0005101500232829236217221210151576336233.33%3166.67%022145648.46%19740548.64%17433951.33%423232431187360183
5Griffins3210000011101110000004222110000078-140.66711162700232829297217221210159824226714214.29%11281.82%022145648.46%19740548.64%17433951.33%423232431187360183
6Heat11000000422000000000001100000042221.00047110023282923721722121015308224400.00%110.00%022145648.46%19740548.64%17433951.33%423232431187360183
7Little Stars1010000025-31010000025-30000000000000.00024600232829238217221210153814216200.00%2150.00%122145648.46%19740548.64%17433951.33%423232431187360183
8Marlies11000000633000000000001100000063321.000681400232829238217221210153886248450.00%3233.33%022145648.46%19740548.64%17433951.33%423232431187360183
9Phantoms1010000024-2000000000001010000024-200.00023500232829229217221210154214427300.00%2150.00%022145648.46%19740548.64%17433951.33%423232431187360183
10Rocket31100100810-21010000024-22100010066030.5008122010232829294217221210158533246111218.18%12375.00%022145648.46%19740548.64%17433951.33%423232431187360183
Total2097001128183-2944000103537-211530010246460230.5758112820910232829265321722121015672231142454872124.14%722565.28%222145648.46%19740548.64%17433951.33%423232431187360183
_Since Last GM Reset2097001128183-2944000103537-211530010246460230.5758112820910232829265321722121015672231142454872124.14%722565.28%222145648.46%19740548.64%17433951.33%423232431187360183
_Vs Conference1886001127475-1733000102829-111530010246460210.5837411418810232829257921722121015619210134405791924.05%672365.67%122145648.46%19740548.64%17433951.33%423232431187360183
_Vs Division1364001025456-25320000020191832001023437-3150.577548313710232829241221722121015430154106287611422.95%531767.92%122145648.46%19740548.64%17433951.33%423232431187360183

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2023W18112820965367223114245410
All Games
GPWLOTWOTL SOWSOLGFGA
209701128183
Home Games
GPWLOTWOTL SOWSOLGFGA
94400103537
Visitor Games
GPWLOTWOTL SOWSOLGFGA
115301024646
Last 10 Games
WLOTWOTL SOWSOL
440011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
872124.14%722565.28%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
217221210152328292
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22145648.46%19740548.64%17433951.33%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
423232431187360183


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-11-301Moose3Rocket4ALXR1BoxScore
3 - 2021-12-0212Moose5Condors3AWR1BoxScore
5 - 2021-12-0420Moose6Barracuda7ALXXBoxScore
7 - 2021-12-0626Rocket4Moose2BLR1BoxScore
10 - 2021-12-0948Admirals6Moose3BLBoxScore
14 - 2021-12-1368Barracuda5Moose3BLR1BoxScore
17 - 2021-12-1683Moose5Griffins3AWR1BoxScore
20 - 2021-12-1995Condors4Moose5BWBoxScore
21 - 2021-12-20104Moose6Marlies3AWBoxScore
25 - 2021-12-24120Griffins2Moose4BWR1BoxScore
27 - 2021-12-26131Moose2Condors4ALBoxScore
29 - 2021-12-28143Moose3Rocket2AWR1BoxScore
30 - 2021-12-29152Little Stars5Moose2BLBoxScore
32 - 2021-12-31162Moose2Griffins5ALR1BoxScore
34 - 2022-01-02173Moose2Phantoms4ALBoxScore
36 - 2022-01-04181Barracuda4Moose6BWR1BoxScore
38 - 2022-01-06192Moose8Barracuda9ALXXBoxScore
40 - 2022-01-08205Moose4Heat2AWBoxScore
41 - 2022-01-09212Admirals4Moose5BWXXBoxScore
44 - 2022-01-12232Crunch3Moose5BWBoxScore
46 - 2022-01-14243Moose-Monsters-
48 - 2022-01-16254Moose-Wolfpack-
49 - 2022-01-17260Thunderbirds-Moose-
53 - 2022-01-21279Moose-Thunderbirds-
54 - 2022-01-22286Sound Tigers-Moose-
58 - 2022-01-26304Moose-Heat-
60 - 2022-01-28312Senators-Moose-
62 - 2022-01-30330Moose-Reign-
63 - 2022-01-31337Penguins-Moose-
66 - 2022-02-03348Moose-Crunch-
68 - 2022-02-05362Barracuda-Moose-
70 - 2022-02-07371Moose-Rocket-
72 - 2022-02-09383Moose-Sound Tigers-
73 - 2022-02-10390Monsters-Moose-
78 - 2022-02-15414Devils-Moose-
82 - 2022-02-19434Moose-Punishers-
84 - 2022-02-21441Wolves-Moose-
87 - 2022-02-24457Moose-Wolves-
89 - 2022-02-26466Admirals-Moose-
91 - 2022-02-28476Moose-Admirals-
93 - 2022-03-02492Condors-Moose-
99 - 2022-03-08517Moose-Penguins-
100 - 2022-03-09521Reign-Moose-
103 - 2022-03-12534Moose-Devils-
105 - 2022-03-14545Marlies-Moose-
107 - 2022-03-16560Moose-Icehogs-
110 - 2022-03-19570Comets-Moose-
112 - 2022-03-21582Moose-Icehogs-
114 - 2022-03-23590Moose-Bears-
115 - 2022-03-24596Eagles-Moose-
118 - 2022-03-27610Moose-Wolves-
121 - 2022-03-30624Rocket-Moose-
125 - 2022-04-03644Moose-Griffins-
126 - 2022-04-04650Bears-Moose-
129 - 2022-04-07672Moose-Little Stars-
130 - 2022-04-08676Condors-Moose-
132 - 2022-04-10694Moose-Phantoms-
133 - 2022-04-11699Moose-Senators-
134 - 2022-04-12702Icehogs-Moose-
138 - 2022-04-16726Moose-Rampage-
139 - 2022-04-17728Phantoms-Moose-
143 - 2022-04-21753Rocket-Moose-
146 - 2022-04-24767Moose-Reign-
148 - 2022-04-26780Griffins-Moose-
150 - 2022-04-28794Moose-Marlies-
153 - 2022-05-01806Griffins-Moose-
155 - 2022-05-03818Moose-Comets-
157 - 2022-05-05832Monsters-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2022-05-10857Senators-Moose-
166 - 2022-05-14881Punishers-Moose-
168 - 2022-05-16889Moose-Eagles-
172 - 2022-05-20908Heat-Moose-
174 - 2022-05-22916Moose-Barracuda-
177 - 2022-05-25934Little Stars-Moose-
181 - 2022-05-29954Little Stars-Moose-
183 - 2022-05-31963Moose-Condors-
184 - 2022-06-01969Moose-Eagles-
188 - 2022-06-05986Heat-Moose-
193 - 2022-06-101014Wolfpack-Moose-
198 - 2022-06-151034Rampage-Moose-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance16,8368,224
Attendance PCT93.53%91.38%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
31 2784 - 92.81% 83,139$748,252$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
623,684$ 1,810,000$ 1,545,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,050$ 414,684$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,577,312$ 156 13,800$ 2,152,800$




Moose Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Moose Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA