Login

Monsters
GP: 18 | W: 10 | L: 7 | OTL: 1 | P: 21
GF: 75 | GA: 69 | PP%: 25.88% | PK%: 80.25%
GM : Yann Laforest | Morale : 43 | Team Overall : 64
Next Games #243 vs Moose
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Monsters
10-7-1, 21pts
3
FINAL
5 Crunch
7-7-4, 18pts
Team Stats
L4StreakL1
5-3-1Home Record4-3-2
5-4-0Away Record3-4-2
4-6-0Last 10 Games2-6-2
4.17Goals Per Game3.89
3.83Goals Against Per Game4.44
25.88%Power Play Percentage24.18%
80.25%Penalty Kill Percentage76.39%
Eagles
12-4-1, 25pts
4
FINAL
3 Monsters
10-7-1, 21pts
Team Stats
W1StreakL4
7-2-0Home Record5-3-1
5-2-1Away Record5-4-0
7-2-1Last 10 Games4-6-0
3.88Goals Per Game4.17
3.29Goals Against Per Game3.83
20.00%Power Play Percentage25.88%
85.29%Penalty Kill Percentage80.25%
Moose
10-7-3, 23pts
2022-01-14
Monsters
10-7-1, 21pts
Team Stats
W1StreakL4
5-4-0Home Record5-3-1
5-3-3Away Record5-4-0
5-4-1Last 10 Games4-6-0
4.05Goals Per Game4.17
4.15Goals Against Per Game3.83
24.14%Power Play Percentage25.88%
65.28%Penalty Kill Percentage80.25%
Monsters
10-7-1, 21pts
2022-01-15
Punishers
8-7-3, 19pts
Team Stats
L4StreakW1
5-3-1Home Record7-2-0
5-4-0Away Record1-5-3
4-6-0Last 10 Games4-4-2
4.17Goals Per Game4.33
3.83Goals Against Per Game4.00
25.88%Power Play Percentage15.15%
80.25%Penalty Kill Percentage82.72%
Monsters
10-7-1, 21pts
2022-01-18
Eagles
12-4-1, 25pts
Team Stats
L4StreakW1
5-3-1Home Record7-2-0
5-4-0Away Record5-2-1
4-6-0Last 10 Games7-2-1
4.17Goals Per Game3.88
3.83Goals Against Per Game3.29
25.88%Power Play Percentage20.00%
80.25%Penalty Kill Percentage85.29%
Team Leaders
Goals
Matt Calvert
14
Assists
Aaron Ness
18
Points
Matt Calvert
24
Plus/Minus
Richard Nejezchleb
7
Wins
Phoenix Copley
5
Save Percentage
Peyton Jones
0.918

Team Stats
Goals For
75
4.17 GFG
Shots For
568
31.56 Avg
Power Play Percentage
25.9%
22 GF
Offensive Zone Start
36.6%
Goals Against
69
3.83 GAA
Shots Against
587
32.61 Avg
Penalty Kill Percentage
80.2%
16 GA
Defensive Zone Start
36.2%
Team Info

General ManagerYann Laforest
CoachTony Twist
DivisionJohn-Ahearne
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,866
Season Tickets300


Roster Info

Pro Team26
Farm Team20
Contract Limit46 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Matt CalvertX100.006825767473817371656579627366593548700271950,000$
2Christian HansonX100.006733796779696863757771606975621948690301900,000$
3Ondrej Kase (R)X100.007348837169687368697670667347436048690203800,000$
4Mitch Marner (R)X100.006536826858777472888871496442428448680191500,000$
5Bobby FarnhamX100.007669676678638065656765636869683048670271600,000$
6Jared Knight (R)X100.006621726371727467707271636649473748660242700,000$
7Austin Watson (R)X100.007228786569697167686368606548483748650241600,000$
8Joakim Nordstrom (R)X100.008145636570647568596767585647484048640242500,000$
9Ryan Fitzgerald (R)X100.006543776368676672726067606545474948640221550,000$
10Richard Nejezchleb (R)X100.005446706265676261656372545746454049620221500,000$
11Marc Michaelis (R)X100.006939696559695863636663645746466237620212500,000$
12Maxim Mamin (R)X100.005834746956656865666164566144445437610211500,000$
13Patrik Laine (R)X100.005928737170716668545476387040409348610182500,000$
14Nathan Noel (R)X100.006237714876726453647368486145475037600212500,000$
15Francis Perron (R)X100.005635675742546766697465365842425637580201525,000$
16Cameron Hughes (R)X100.005127645063585755565148424843435937510201500,000$
17Morgan Rielly (R)X100.007232896868767770547871676455465748700223995,000$
18Aaron Ness (R)X100.006938737269757371497471696157513248690261600,000$
19Dillon Heatherington (R)X100.006724846466697359456351805345445048660211500,000$
20Matt Grzelcyk (R)X100.006426697858636871437249675446464848640222700,000$
21Victor Mete (R)X100.004536707455566872357157594440408048590182500,000$
22Tarmo Reunanen (R)X100.005341675860465653276047604940406448560182500,000$
Scratches
1Dominik Simon (R)X90.026240846864796480767375605554506040690221500,000$
TEAM AVERAGE99.57643674656567686661686558604947524564
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Eric Comrie97.00698169737373707477735748445536710212700,000$
2Phoenix Copley100.00706065737262526773626854533248650241500,000$
Scratches
1Peyton Jones (R)100.00546359525856625055605440406835560202500,000$
TEAM AVERAGE99.0064686466686461646865604746524064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Tony Twist76566970335663USA524550,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Matt CalvertMonsters (Clb)LW181410245140422269173220.29%1640422.50641011710003640146.88%96167001.1922000310
2Aaron NessMonsters (Clb)D1821820228046383811185.26%2650027.82156879011259000.00%02114000.8000000001
3Christian HansonMonsters (Clb)C1851419240343744131711.36%834419.1617810630112380054.01%287126001.1002000011
4Ondrej KaseMonsters (Clb)RW18811195100212753152515.09%736420.2635813690001351035.71%281314001.0401000211
5Mitch MarnerMonsters (Clb)RW1851116-1180262047202910.64%1029316.314151057000011173.68%19113001.0900000100
6Zac DalpeBlue JacketsC759143235211728122417.86%415722.461567290000242048.47%22921001.7801001112
7Dominik SimonMonsters (Clb)C156713-620192248193512.50%723515.7303312191016312155.66%21286001.1011000201
8Morgan RiellyMonsters (Clb)D18210123402827328176.25%3250928.33257778000168100.00%01112000.4700000101
9Matt GrzelcykMonsters (Clb)D1809901803128138130.00%1936420.25022153000146000.00%0913000.4900000000
10Bobby FarnhamMonsters (Clb)RW18358-1100271429121710.34%321211.7811213000000060.00%1543000.7500000000
11Jared KnightMonsters (Clb)C18448-34021132781614.81%019710.98000114000001147.67%8665000.8100000010
12Austin WatsonMonsters (Clb)LW18527-98020141651031.25%319911.102243570000171011.11%904000.7000000000
13Joakim NordstromMonsters (Clb)LW18527-2160201634111114.71%221111.76000000000100066.67%1271000.6600000010
14Patrik LaineMonsters (Clb)LW1833628016211441421.43%41709.48000000002110042.31%2602000.7000000010
15Dillon HeatheringtonMonsters (Clb)D18145040132821944.76%2236920.54101453000150000.00%048000.2700000000
16Richard NejezchlebMonsters (Clb)RW18325755108189516.67%11216.7500000000000150.00%420000.8200001100
17Ryan FitzgeraldMonsters (Clb)C180554201036270.00%0915.1000004000000053.19%4722001.0900000001
18Victor MeteMonsters (Clb)D18123-26041983512.50%1521411.910000000001000.00%027000.2800000000
19Tarmo ReunanenMonsters (Clb)D18033-3605117540.00%1422412.4700000000118000.00%011000.2700000000
20Marc MichaelisMonsters (Clb)LW1011232013011369.09%2727.250000000000000.00%201000.5500000001
21Maxim MaminMonsters (Clb)C101010002252120.00%1292.9100003000000066.67%930000.6900000000
22Cameron HughesMonsters (Clb)C10000000000000.00%060.70000000000500100.00%100000.0000000000
23Francis PerronMonsters (Clb)LW10000000000000.00%050.56000010000300100.00%100000.0000000000
24Nathan NoelMonsters (Clb)C10000000100000.00%010.16000000000000100.00%100000.0000000000
Team Total or Average37874132206-11821043038756819631013.03%196530514.0422406288662123204919551.57%1084134110000.78370021179
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eric ComrieMonsters (Clb)95310.8873.855300034300154110.333390010
2Phoenix CopleyMonsters (Clb)105200.8813.554730028236125010.750499100
3Peyton JonesMonsters (Clb)20200.9182.89830044930000.000009000
Team Total or Average2110710.8873.6410870066585309120.57171818110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron NessMonsters (Clb)D261990-01-01Yes182 Lbs5 ft10NoNoNo1Pro & Farm600,000$468,000$0$0$No
Austin WatsonMonsters (Clb)LW241992-01-01Yes193 Lbs6 ft4NoNoNo1Pro & Farm600,000$468,000$0$0$No
Bobby FarnhamMonsters (Clb)RW271989-01-01No188 Lbs5 ft10NoNoNo1Pro & Farm600,000$468,000$0$0$No
Cameron HughesMonsters (Clb)C201996-01-01Yes195 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Christian HansonMonsters (Clb)C301986-01-01No202 Lbs6 ft3NoNoNo1Pro & Farm900,000$702,000$0$0$No
Dillon HeatheringtonMonsters (Clb)D211995-01-01Yes185 Lbs6 ft4NoNoNo1Pro & Farm500,000$390,000$0$0$No
Dominik SimonMonsters (Clb)C221994-01-01Yes190 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Eric ComrieMonsters (Clb)G211995-01-01No185 Lbs6 ft1NoNoNo2Pro & Farm700,000$546,000$0$0$No800,000$
Francis PerronMonsters (Clb)LW201996-01-01Yes178 Lbs6 ft2NoNoNo1Pro & Farm525,000$409,500$0$0$No
Jared KnightMonsters (Clb)C241992-01-01Yes203 Lbs5 ft11NoNoNo2Pro & Farm700,000$546,000$0$0$No700,000$
Joakim NordstromMonsters (Clb)LW241992-01-01Yes189 Lbs6 ft1NoNoNo2Pro & Farm500,000$390,000$0$0$No600,000$
Marc MichaelisMonsters (Clb)LW211995-01-01Yes187 Lbs5 ft11NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Matt CalvertMonsters (Clb)LW271989-01-01No187 Lbs5 ft10NoNoNo1Pro & Farm950,000$741,000$0$0$No
Matt GrzelcykMonsters (Clb)D221994-01-01Yes171 Lbs5 ft9NoNoNo2Pro & Farm700,000$546,000$0$0$No800,000$
Maxim MaminMonsters (Clb)C211995-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm500,000$390,000$0$0$No
Mitch MarnerMonsters (Clb)RW191997-01-01Yes175 Lbs6 ft0NoNoNo1Pro & Farm500,000$390,000$0$0$No
Morgan RiellyMonsters (Clb)D221994-01-01Yes200 Lbs6 ft0NoNoNo3Pro & Farm995,000$776,100$0$0$No1,300,000$1,800,000$
Nathan NoelMonsters (Clb)C211995-01-01Yes209 Lbs6 ft2NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Ondrej KaseMonsters (Clb)RW201996-01-01Yes186 Lbs5 ft11NoNoNo3Pro & Farm800,000$624,000$0$0$No995,000$1,300,000$
Patrik LaineMonsters (Clb)LW181998-01-01Yes205 Lbs6 ft4NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Peyton JonesMonsters (Clb)G201996-01-01Yes209 Lbs6 ft4NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Phoenix CopleyMonsters (Clb)G241992-01-01No196 Lbs6 ft4NoNoNo1Pro & Farm500,000$390,000$0$0$No
Richard NejezchlebMonsters (Clb)RW221994-01-01Yes187 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Ryan FitzgeraldMonsters (Clb)C221994-01-01Yes185 Lbs5 ft10NoNoNo1Pro & Farm550,000$429,000$0$0$No
Tarmo ReunanenMonsters (Clb)D181998-01-01Yes179 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Victor MeteMonsters (Clb)D181998-01-01Yes183 Lbs5 ft9NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2622.08190 Lbs6 ft01.54600,769$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt CalvertChristian HansonOndrej Kase40122
2Austin WatsonJared KnightMitch Marner30122
3Joakim NordstromRyan FitzgeraldBobby Farnham20122
4Marc MichaelisMaxim MaminRichard Nejezchleb10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Morgan RiellyAaron Ness40122
2Dillon HeatheringtonMatt Grzelcyk30122
3Victor MeteTarmo Reunanen20122
4Morgan RiellyAaron Ness10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matt CalvertChristian HansonOndrej Kase60122
2Austin WatsonJared KnightMitch Marner40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Matt CalvertChristian Hanson60122
2Ondrej KaseMitch Marner40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Matt Calvert60122Morgan RiellyAaron Ness60122
2Christian Hanson40122Dillon HeatheringtonMatt Grzelcyk40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Matt CalvertChristian Hanson60122
2Ondrej KaseMitch Marner40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matt CalvertChristian HansonOndrej KaseMorgan RiellyAaron Ness
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matt CalvertChristian HansonOndrej KaseMorgan RiellyAaron Ness
Extra Forwards
Normal PowerPlayPenalty Kill
Patrik Laine, Nathan Noel, Francis PerronPatrik Laine, Nathan NoelFrancis Perron
Extra Defensemen
Normal PowerPlayPenalty Kill
Victor Mete, Tarmo Reunanen, Dillon HeatheringtonVictor MeteTarmo Reunanen, Dillon Heatherington
Penalty Shots
Matt Calvert, Christian Hanson, Ondrej Kase, Mitch Marner, Bobby Farnham
Goalie
#1 : Phoenix Copley, #2 : Eric Comrie


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2110000056-11010000013-21100000043120.5005101510192926350172197199769272646900.00%13376.92%019439748.87%20039251.02%16529555.93%382203374170333167
2Crunch1010000035-2000000000001010000035-200.00036910192926336172197199734122285120.00%110.00%019439748.87%20039251.02%16529555.93%382203374170333167
3Eagles1010000034-11010000034-10000000000000.0003690019292632817219719971910428600.00%20100.00%019439748.87%20039251.02%16529555.93%382203374170333167
4Heat10000010321000000000001000001032121.0003470019292634317219719974211822300.00%40100.00%019439748.87%20039251.02%16529555.93%382203374170333167
5Icehogs22000000954110000005231100000043141.000915240019292636317219719976621225610550.00%110100.00%119439748.87%20039251.02%16529555.93%382203374170333167
6Penguins21100000910-10000000000021100000910-120.50091625001929263511721971997612114289111.11%7185.71%019439748.87%20039251.02%16529555.93%382203374170333167
7Phantoms1010000047-31010000047-30000000000000.000481200192926325172197199747913268337.50%4175.00%019439748.87%20039251.02%16529555.93%382203374170333167
8Punishers2200000011742200000011740000000000041.000111829001929263711721971997552910519444.44%50100.00%019439748.87%20039251.02%16529555.93%382203374170333167
9Rocket21100000972110000005231010000045-120.50091524001929263631721971997681626539555.56%13284.62%019439748.87%20039251.02%16529555.93%382203374170333167
10Senators3200000115962100000110821100000051450.83315274200192926310317219719978327476910220.00%16475.00%019439748.87%20039251.02%16529555.93%382203374170333167
11Sound Tigers1010000047-3000000000001010000047-300.0004711001929263351721971997431310237114.29%5420.00%019439748.87%20039251.02%16529555.93%382203374170333167
Total1897000117569695300001393369440001036360210.583751322072019292635681721971997587196182430852225.88%811680.25%119439748.87%20039251.02%16529555.93%382203374170333167
_Since Last GM Reset1897000117569695300001393369440001036360210.583751322072019292635681721971997587196182430852225.88%811680.25%119439748.87%20039251.02%16529555.93%382203374170333167
_Vs Conference1163000114536963200001252235310001020146150.68245791241019292633471721971997375111142272491530.61%611083.61%119439748.87%20039251.02%16529555.93%382203374170333167
_Vs Division75100001292094210000116133330000001376110.7862952811019292632161721971997218759517129724.14%40782.50%119439748.87%20039251.02%16529555.93%382203374170333167

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1821L47513220756858719618243020
All Games
GPWLOTWOTL SOWSOLGFGA
189700117569
Home Games
GPWLOTWOTL SOWSOLGFGA
95300013933
Visitor Games
GPWLOTWOTL SOWSOLGFGA
94400103636
Last 10 Games
WLOTWOTL SOWSOL
360010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
852225.88%811680.25%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
17219719971929263
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19439748.87%20039251.02%16529555.93%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
382203374170333167


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2021-12-0315Icehogs2Monsters5BWBoxScore
6 - 2021-12-0524Monsters4Icehogs3AWBoxScore
7 - 2021-12-0629Monsters4Admirals3AWBoxScore
10 - 2021-12-0946Senators5Monsters4BLXXBoxScore
13 - 2021-12-1263Rocket2Monsters5BWBoxScore
15 - 2021-12-1470Monsters6Penguins5AWBoxScore
16 - 2021-12-1580Monsters5Senators1AWBoxScore
19 - 2021-12-1890Monsters3Penguins5ALBoxScore
21 - 2021-12-2098Admirals3Monsters1BLBoxScore
24 - 2021-12-23118Senators3Monsters6BWBoxScore
25 - 2021-12-24122Monsters3Heat2AWXXBoxScore
29 - 2021-12-28145Punishers4Monsters6BWBoxScore
33 - 2022-01-01167Monsters4Rocket5ALBoxScore
35 - 2022-01-03174Punishers3Monsters5BWBoxScore
37 - 2022-01-05190Phantoms7Monsters4BLBoxScore
40 - 2022-01-08209Monsters4Sound Tigers7ALBoxScore
41 - 2022-01-09217Monsters3Crunch5ALBoxScore
43 - 2022-01-11227Eagles4Monsters3BLBoxScore
46 - 2022-01-14243Moose-Monsters-
47 - 2022-01-15253Monsters-Punishers-
50 - 2022-01-18264Monsters-Eagles-
53 - 2022-01-21278Little Stars-Monsters-
56 - 2022-01-24297Wolfpack-Monsters-
59 - 2022-01-27310Monsters-Marlies-
61 - 2022-01-29323Marlies-Monsters-
63 - 2022-01-31335Monsters-Marlies-
66 - 2022-02-03351Barracuda-Monsters-
69 - 2022-02-06365Monsters-Condors-
71 - 2022-02-08377Reign-Monsters-
73 - 2022-02-10390Monsters-Moose-
76 - 2022-02-13402Monsters-Icehogs-
77 - 2022-02-14409Wolves-Monsters-
81 - 2022-02-18428Punishers-Monsters-
85 - 2022-02-22446Monsters-Rocket-
86 - 2022-02-23454Thunderbirds-Monsters-
90 - 2022-02-27475Reign-Monsters-
94 - 2022-03-03498Griffins-Monsters-
96 - 2022-03-05505Monsters-Devils-
98 - 2022-03-07515Monsters-Icehogs-
100 - 2022-03-09526Bears-Monsters-
106 - 2022-03-15551Griffins-Monsters-
111 - 2022-03-20575Senators-Monsters-
116 - 2022-03-25601Rampage-Monsters-
118 - 2022-03-27607Monsters-Thunderbirds-
121 - 2022-03-30623Monsters-Senators-
122 - 2022-03-31629Penguins-Monsters-
125 - 2022-04-03647Monsters-Phantoms-
126 - 2022-04-04654Devils-Monsters-
129 - 2022-04-07673Monsters-Penguins-
130 - 2022-04-08679Crunch-Monsters-
132 - 2022-04-10692Monsters-Bears-
134 - 2022-04-12704Monsters-Comets-
135 - 2022-04-13708Heat-Monsters-
140 - 2022-04-18732Comets-Monsters-
142 - 2022-04-20747Monsters-Rampage-
144 - 2022-04-22758Phantoms-Monsters-
146 - 2022-04-24765Monsters-Griffins-
148 - 2022-04-26779Monsters-Wolfpack-
149 - 2022-04-27785Icehogs-Monsters-
154 - 2022-05-02810Rocket-Monsters-
156 - 2022-05-04823Monsters-Little Stars-
157 - 2022-05-05832Monsters-Moose-
158 - 2022-05-06837Icehogs-Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2022-05-10860Heat-Monsters-
163 - 2022-05-11866Monsters-Punishers-
165 - 2022-05-13874Monsters-Heat-
167 - 2022-05-15887Monsters-Admirals-
168 - 2022-05-16891Sound Tigers-Monsters-
173 - 2022-05-21912Monsters-Senators-
174 - 2022-05-22918Admirals-Monsters-
176 - 2022-05-24928Monsters-Heat-
178 - 2022-05-26938Monsters-Thunderbirds-
179 - 2022-05-27942Monsters-Admirals-
181 - 2022-05-29953Barracuda-Monsters-
183 - 2022-05-31966Monsters-Barracuda-
186 - 2022-06-03981Condors-Monsters-
187 - 2022-06-04984Monsters-Reign-
191 - 2022-06-081002Condors-Monsters-
192 - 2022-06-091007Monsters-Wolves-
198 - 2022-06-151033Admirals-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance17,3918,399
Attendance PCT96.62%93.32%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
31 2866 - 95.52% 85,711$771,402$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
472,240$ 1,562,000$ 1,080,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
7,810$ 351,240$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,657,051$ 156 10,560$ 1,647,360$




Monsters Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA