Login

Marlies
GP: 19 | W: 9 | L: 9 | OTL: 1 | P: 19
GF: 63 | GA: 75 | PP%: 11.29% | PK%: 79.52%
GM : Pascal Landry | Morale : 39 | Team Overall : 63
Next Games #246 vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Marlies
9-9-1, 19pts
4
FINAL
3 Thunderbirds
9-5-3, 21pts
Team Stats
L1StreakSOL1
2-6-1Home Record6-2-1
7-3-0Away Record3-3-2
4-6-0Last 10 Games6-2-2
3.32Goals Per Game3.88
3.95Goals Against Per Game3.18
11.29%Power Play Percentage21.74%
79.52%Penalty Kill Percentage83.91%
Rampage
11-6-2, 24pts
5
FINAL
1 Marlies
9-9-1, 19pts
Team Stats
W1StreakL1
6-1-1Home Record2-6-1
5-5-1Away Record7-3-0
7-3-0Last 10 Games4-6-0
3.58Goals Per Game3.32
3.47Goals Against Per Game3.95
21.11%Power Play Percentage11.29%
80.22%Penalty Kill Percentage79.52%
Marlies
9-9-1, 19pts
2022-01-14
Griffins
10-7-0, 20pts
Team Stats
L1StreakSOW1
2-6-1Home Record5-4-0
7-3-0Away Record5-3-0
4-6-0Last 10 Games4-6-0
3.32Goals Per Game4.59
3.95Goals Against Per Game4.00
11.29%Power Play Percentage21.05%
79.52%Penalty Kill Percentage76.06%
Heat
8-8-3, 19pts
2022-01-16
Marlies
9-9-1, 19pts
Team Stats
OTL1StreakL1
3-3-2Home Record2-6-1
5-5-1Away Record7-3-0
2-5-3Last 10 Games4-6-0
3.68Goals Per Game3.32
4.05Goals Against Per Game3.95
18.99%Power Play Percentage11.29%
82.29%Penalty Kill Percentage79.52%
Marlies
9-9-1, 19pts
2022-01-18
Devils
5-13-0, 10pts
Team Stats
L1StreakL3
2-6-1Home Record3-6-0
7-3-0Away Record2-7-0
4-6-0Last 10 Games2-8-0
3.32Goals Per Game3.72
3.95Goals Against Per Game4.89
11.29%Power Play Percentage23.26%
79.52%Penalty Kill Percentage76.92%
Team Leaders
Goals
Nick Ritchie
12
Assists
Nick Ritchie
13
Points
Nick Ritchie
25
Plus/Minus
Pavel Zacha
10
Wins
Malcolm Subban
5
Save Percentage
Malcolm Subban
0.88

Team Stats
Goals For
63
3.32 GFG
Shots For
591
31.11 Avg
Power Play Percentage
11.3%
7 GF
Offensive Zone Start
34.4%
Goals Against
75
3.95 GAA
Shots Against
608
32.00 Avg
Penalty Kill Percentage
79.5%
17 GA
Defensive Zone Start
39.0%
Team Info

General ManagerPascal Landry
CoachPeter DeBoer
DivisionFritz-Kraatz
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,816
Season Tickets300


Roster Info

Pro Team31
Farm Team18
Contract Limit49 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Linden Vey (R)X100.007233747669757775777577636957523744710251995,000$
2Nick Ritchie (R)X100.007740727682638576647577635952466645710202950,000$
3JT Compher (R)X100.006728857479747878646881607151445944700212950,000$
4Pavel Zacha (R)X100.006727826478686872697485556744427644690191500,000$
5Nicholas Baptiste (R)X100.007340727674567274597273636244445544680213700,000$
6Johan Larsson (R)X100.006337757362716668757571506146463944660241600,000$
7Shane Prince (R)X100.006535806675697265736275566756553716660241500,000$
8Aleksi Saarela (R)X100.005825717955605072596569517342427644630191500,000$
9Logan Brown (R)X100.007448636875547864556665525340408344620182500,000$
10Mathieu Olivier (R)X100.007343676678486659566362565342437044600192500,000$
11Tyler Benson (R)X100.007343626475517363496366564740408244600182500,000$
12Jakob Forsbacka-Karlsson (R)X100.006436626653565152584967505143435624560204400,000$
13Haydn Fleury (R)X100.007135887275617565397258865650436028720202950,000$
14Tim Erixon (R)X100.007440847071787174617166756563493644720251950,000$
15Neal Pionk (R)X100.006533887859647385438168755149466144710211500,000$
16Brett Pesce (R)X100.006330788269677575428362715251464732700221650,000$
17Jeff Corbett (R)X100.006735815851736662427173655746464644650221600,000$
18Lucas Carlsson (R)X100.006938816266625956335543684042417544620192500,000$
Scratches
1Colton Sissons (R)X95.227751707472697074766966667351464135690232800,000$
2Henri Ikonen (R)X100.006943626460467165566564574343434321600211500,000$
3Tobias Lindberg (R)X100.006641666857576458666061516243434333590211300,000$
4Zack MacEwen (R)X100.006242585868586656505860495143444521560201500,000$
5Otto Koivula (R)X100.005130605267645165635267406440407221560182500,000$
6Jaden Lindo (R)X100.006131605061504959495860475442425521540201250,000$
7Radovan Bondra (R)X100.006422545052415655365952483941415321500191400,000$
8Dennis Gilbert (R)X100.006636696152616045366446693342435028590201500,000$
9Brycen Martin (R)X100.005428596650404867216644633542425621560201300,000$
10Simon Bourque (R)X100.003730515342415653245936564341415821480191400,000$
TEAM AVERAGE99.83663671676560666553666459554644563463
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Malcolm Subban98.00697485696779856968886854494744730231800,000$
2Charlie Lindgren100.00727678576490775855767452475744680231500,000$
Scratches
1Jamie Phillips100.00756780555777725854766147453521640231400,000$
TEAM AVERAGE99.3372728160638278625980685147463668
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Peter DeBoer67717386546362Can554666,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick RitchieMarlies (TOR)LW191213251395303174225016.22%1041621.9012311510111571257.14%351710001.2002001041
2Pavel ZachaMarlies (TOR)C19991810160322644121720.45%836119.052137461012251040.90%37964000.9900000200
3Neal PionkMarlies (TOR)D1931316-52020394317226.98%2944623.521121156011057000.00%01214000.7200000010
4Nicholas BaptisteMarlies (TOR)RW19610166140431039122515.38%927314.40011428000020153.85%1365001.1700000102
5JT CompherMarlies (TOR)RW196814-360382053153511.32%834518.191125450113371028.57%21122000.8122000110
6Colton SissonsMarlies (TOR)C172810-823524295312333.77%531218.380445430113521050.69%361210000.6400100100
7Linden VeyMarlies (TOR)RW196410-168025286819418.82%1033217.472136520002211058.62%58205000.6001000210
8Aleksi SaarelaMarlies (TOR)C1953812015193471914.71%322812.03000080001351037.78%9031000.7011000011
9Brett PesceMarlies (TOR)D18178-2402323221384.55%1338721.52011449000155000.00%0516000.4100000001
10Johan LarssonMarlies (TOR)LW19156-2801515245104.17%522311.76000030000320066.67%642000.5400000010
11Logan BrownMarlies (TOR)C19516-922026211851027.78%321611.4000000000052050.00%16013000.5500000101
12Lucas CarlssonMarlies (TOR)D1905532012229420.00%2124713.040001600000000.00%029000.4000000000
13Jeff CorbettMarlies (TOR)D19044520821141050.00%2228314.9300009000020000.00%038000.2800000000
14Tim ErixonMarlies (TOR)D19044-4602036281080.00%2547625.09000144000277000.00%01113000.1700000000
15Mathieu OlivierMarlies (TOR)RW192244100246114818.18%21708.9700000000000025.00%405000.4700000001
16Haydn FleuryMarlies (TOR)D16123-1201724181255.56%3340325.25000132101161000.00%0515100.1500000010
17Tyler BensonMarlies (TOR)LW1912338029717995.88%11749.2000000000010060.00%511000.3400000000
18Tobias LindbergMarlies (TOR)RW7112-1206151220.00%0557.970000000000000.00%001000.7200000000
19Jakob Forsbacka-KarlssonMarlies (TOR)C2011100000120.00%0168.2300000000000050.00%400001.2100000000
20Dennis GilbertMarlies (TOR)D4000320343210.00%65213.070000000001000.00%000000.0000000000
21Shane PrinceMarlies (TOR)LW4000-300452010.00%04411.1000000000010050.00%210000.0000000000
Team Total or Average33461102163-171781041438757919231310.54%213547016.387121956480246165488346.57%1138111124100.60361018107
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanMarlies (TOR)135500.8803.906470042351181011.0002118001
2Charlie LindgrenMarlies (TOR)114410.8793.715010031256116100.5004811001
Team Total or Average249910.8803.8111490073607297110.66761919002


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aleksi SaarelaMarlies (TOR)C191997-01-01Yes200 Lbs5 ft10NoNoNo1Pro & Farm500,000$390,000$0$0$No
Brett PesceMarlies (TOR)D221994-01-01Yes185 Lbs6 ft3NoNoNo1Pro & Farm650,000$507,000$0$0$No
Brycen MartinMarlies (TOR)D201996-01-01Yes198 Lbs6 ft2NoNoNo1Pro & Farm300,000$234,000$0$0$No
Charlie LindgrenMarlies (TOR)G231993-01-01No180 Lbs6 ft1NoNoNo1Pro & Farm500,000$390,000$0$0$No
Colton SissonsMarlies (TOR)C231993-01-01Yes187 Lbs6 ft0NoNoNo2Pro & Farm800,000$624,000$0$0$No900,000$
Dennis GilbertMarlies (TOR)D201996-01-01Yes216 Lbs6 ft2NoNoNo1Pro & Farm500,000$390,000$0$0$No
Haydn FleuryMarlies (TOR)D201996-01-01Yes208 Lbs6 ft3NoNoNo2Pro & Farm950,000$741,000$0$0$No1,200,000$
Henri IkonenMarlies (TOR)LW211995-01-01Yes185 Lbs6 ft0NoNoNo1Pro & Farm500,000$390,000$0$0$No
JT CompherMarlies (TOR)RW211995-01-01Yes185 Lbs5 ft10NoNoNo2Pro & Farm950,000$741,000$0$0$No1,200,000$
Jaden LindoMarlies (TOR)RW201996-01-01Yes215 Lbs6 ft2NoNoNo1Pro & Farm250,000$195,000$0$0$No
Jakob Forsbacka-KarlssonMarlies (TOR)C201996-01-01Yes184 Lbs6 ft1NoNoNo4Pro & Farm400,000$312,000$0$0$No450,000$500,000$550,000$
Jamie PhillipsMarlies (TOR)G231993-01-01No180 Lbs6 ft0NoNoNo1Pro & Farm400,000$312,000$0$0$No
Jeff CorbettMarlies (TOR)D221994-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm600,000$468,000$0$0$No
Johan LarssonMarlies (TOR)LW241992-01-01Yes206 Lbs5 ft11NoNoNo1Pro & Farm600,000$468,000$0$0$No
Linden VeyMarlies (TOR)RW251991-01-01Yes189 Lbs6 ft0NoNoNo1Pro & Farm995,000$776,100$0$0$No
Logan BrownMarlies (TOR)C181998-01-01Yes227 Lbs6 ft6NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Lucas CarlssonMarlies (TOR)D191997-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Malcolm SubbanMarlies (TOR)G231993-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm800,000$624,000$0$0$No
Mathieu OlivierMarlies (TOR)RW191997-01-01Yes209 Lbs6 ft2NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Neal PionkMarlies (TOR)D211995-01-01Yes186 Lbs6 ft0NoNoNo1Pro & Farm500,000$390,000$0$0$No
Nicholas BaptisteMarlies (TOR)RW211995-01-01Yes185 Lbs6 ft1NoNoNo3Pro & Farm700,000$546,000$0$0$No800,000$900,000$
Nick RitchieMarlies (TOR)LW201996-01-01Yes180 Lbs6 ft0NoNoNo2Pro & Farm950,000$741,000$0$0$No1,200,000$
Otto KoivulaMarlies (TOR)LW181998-01-01Yes220 Lbs6 ft4NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Pavel ZachaMarlies (TOR)C191997-01-01Yes210 Lbs6 ft3NoNoNo1Pro & Farm500,000$390,000$0$0$No
Radovan BondraMarlies (TOR)RW191997-01-01Yes217 Lbs6 ft5NoNoNo1Pro & Farm400,000$312,000$0$0$No
Shane PrinceMarlies (TOR)LW241992-01-01Yes185 Lbs5 ft11NoNoNo1Pro & Farm500,000$390,000$0$0$No
Simon BourqueMarlies (TOR)D191997-01-01Yes198 Lbs6 ft1NoNoNo1Pro & Farm400,000$312,000$0$0$No
Tim ErixonMarlies (TOR)D251991-01-01Yes200 Lbs6 ft2NoNoNo1Pro & Farm950,000$741,000$0$0$No
Tobias LindbergMarlies (TOR)RW211995-01-01Yes185 Lbs6 ft3NoNoNo1Pro & Farm300,000$234,000$0$0$No
Tyler BensonMarlies (TOR)LW181998-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$390,000$0$0$No500,000$
Zack MacEwenMarlies (TOR)C201996-01-01Yes205 Lbs6 ft3NoNoNo1Pro & Farm500,000$390,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3120.87196 Lbs6 ft11.45577,258$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nick RitchiePavel ZachaJT Compher40122
2Shane PrinceAleksi SaarelaNicholas Baptiste30122
3Johan LarssonLogan BrownLinden Vey20122
4Tyler BensonJakob Forsbacka-KarlssonMathieu Olivier10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryNeal Pionk40122
2Tim ErixonBrett Pesce30122
3Jeff CorbettLucas Carlsson20122
4Haydn FleuryTim Erixon10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nick RitchiePavel ZachaLinden Vey60122
2JT CompherAleksi SaarelaNicholas Baptiste40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Neal PionkBrett Pesce60122
2Haydn FleuryTim Erixon40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Logan BrownNick Ritchie60122
2Pavel ZachaJT Compher40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryTim Erixon60122
2Neal PionkBrett Pesce40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Logan Brown60122Haydn FleuryTim Erixon60122
2Pavel Zacha40122Neal PionkBrett Pesce40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Logan BrownNick Ritchie60122
2Pavel ZachaJT Compher40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryTim Erixon60122
2Neal PionkBrett Pesce40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nick RitchiePavel ZachaLinden VeyHaydn FleuryNeal Pionk
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nick RitchiePavel ZachaLinden VeyHaydn FleuryTim Erixon
Extra Forwards
Normal PowerPlayPenalty Kill
Aleksi Saarela, Pavel Zacha, Nicholas BaptisteJT Compher, Pavel ZachaNicholas Baptiste
Extra Defensemen
Normal PowerPlayPenalty Kill
Brett Pesce, Haydn Fleury, Lucas CarlssonJeff CorbettHaydn Fleury, Jeff Corbett
Penalty Shots
Nick Ritchie, Aleksi Saarela, JT Compher, Linden Vey, Pavel Zacha
Goalie
#1 : Malcolm Subban, #2 : Charlie Lindgren


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda11000000211000000000001100000021121.0002460017222332920720117911227224400.00%10100.00%017839545.06%20644845.98%14930648.69%399216406179343171
2Griffins1010000037-41010000037-40000000000000.000347001722233182072011791133108183133.33%4175.00%017839545.06%20644845.98%14930648.69%399216406179343171
3Heat31200000812-42110000069-31010000023-120.33381523001722233982072011791110037288414214.29%14378.57%117839545.06%20644845.98%14930648.69%399216406179343171
4Icehogs1010000068-2000000000001010000068-200.0006101600172223345207201179113581021500.00%4250.00%017839545.06%20644845.98%14930648.69%399216406179343171
5Little Stars22000000954110000005321100000042241.000916250017222336720720117911511916525120.00%8187.50%117839545.06%20644845.98%14930648.69%399216406179343171
6Moose1010000036-31010000036-30000000000000.000358001722233382072011791138816343266.67%8450.00%017839545.06%20644845.98%14930648.69%399216406179343171
7Phantoms321000001012-21010000017-62200000095440.66710172700172223395207201179111034222481119.09%100100.00%017839545.06%20644845.98%14930648.69%399216406179343171
8Rampage1010000015-41010000015-40000000000000.000123001722233202072011791135101518300.00%5260.00%017839545.06%20644845.98%14930648.69%399216406179343171
9Reign3110000189-12010000147-31100000042230.500812200017222337820720117911100443866400.00%19384.21%017839545.06%20644845.98%14930648.69%399216406179343171
10Senators21100000972000000000002110000097220.50091625101722233722072011791161172136500.00%80100.00%017839545.06%20644845.98%14930648.69%399216406179343171
11Thunderbirds10000010431000000000001000001043121.000461000172223331207201179113013423500.00%2150.00%017839545.06%20644845.98%14930648.69%399216406179343171
Total1989000116375-12926000012344-2110630001040319190.500631071701017222335912072011791160821518042462711.29%831779.52%217839545.06%20644845.98%14930648.69%399216406179343171
_Since Last GM Reset1989000116375-12926000012344-2110630001040319190.500631071701017222335912072011791160821518042462711.29%831779.52%217839545.06%20644845.98%14930648.69%399216406179343171
_Vs Conference1568000014962-13715000011736-198530000032266130.43349831321017222334732072011791149217314533149612.24%681380.88%117839545.06%20644845.98%14930648.69%399216406179343171
_Vs Division944000012633-7513000011123-12431000001510590.500264470001722233271207201179113031238819829310.34%43686.05%117839545.06%20644845.98%14930648.69%399216406179343171

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1919L16310717059160821518042410
All Games
GPWLOTWOTL SOWSOLGFGA
198900116375
Home Games
GPWLOTWOTL SOWSOLGFGA
92600012344
Visitor Games
GPWLOTWOTL SOWSOLGFGA
106300104031
Last 10 Games
WLOTWOTL SOWSOL
360010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
62711.29%831779.52%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
207201179111722233
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17839545.06%20644845.98%14930648.69%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
399216406179343171


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-11-305Phantoms7Marlies1BLR1BoxScore
4 - 2021-12-0316Marlies5Phantoms2AWBoxScore
7 - 2021-12-0628Marlies6Senators2AWBoxScore
8 - 2021-12-0736Marlies4Little Stars2AWBoxScore
10 - 2021-12-0949Heat6Marlies2BLR1BoxScore
11 - 2021-12-1054Marlies4Phantoms3AWBoxScore
15 - 2021-12-1473Marlies4Reign2AWR1BoxScore
16 - 2021-12-1578Reign3Marlies2BLXXBoxScore
20 - 2021-12-1994Marlies2Heat3ALR1BoxScore
21 - 2021-12-20104Moose6Marlies3BLBoxScore
23 - 2021-12-22110Marlies2Barracuda1AWBoxScore
26 - 2021-12-25129Reign4Marlies2BLR1BoxScore
29 - 2021-12-28148Marlies6Icehogs8ALBoxScore
31 - 2021-12-30155Heat3Marlies4BWR1BoxScore
35 - 2022-01-03178Little Stars3Marlies5BWBoxScore
38 - 2022-01-06195Marlies3Senators5ALBoxScore
39 - 2022-01-07202Griffins7Marlies3BLBoxScore
42 - 2022-01-10218Marlies4Thunderbirds3AWXXBoxScore
44 - 2022-01-12228Rampage5Marlies1BLBoxScore
46 - 2022-01-14246Marlies-Griffins-
48 - 2022-01-16255Heat-Marlies-
50 - 2022-01-18267Marlies-Devils-
53 - 2022-01-21280Condors-Marlies-
55 - 2022-01-23287Marlies-Condors-
57 - 2022-01-25301Marlies-Little Stars-
59 - 2022-01-27310Monsters-Marlies-
61 - 2022-01-29323Marlies-Monsters-
63 - 2022-01-31335Monsters-Marlies-
67 - 2022-02-04353Marlies-Icehogs-
68 - 2022-02-05361Devils-Marlies-
71 - 2022-02-08378Marlies-Rampage-
72 - 2022-02-09387Phantoms-Marlies-
75 - 2022-02-12397Marlies-Admirals-
78 - 2022-02-15412Phantoms-Marlies-
80 - 2022-02-17426Marlies-Crunch-
83 - 2022-02-20437Admirals-Marlies-
86 - 2022-02-23452Marlies-Reign-
88 - 2022-02-25463Comets-Marlies-
90 - 2022-02-27470Marlies-Bears-
93 - 2022-03-02488Marlies-Penguins-
94 - 2022-03-03493Sound Tigers-Marlies-
99 - 2022-03-08518Griffins-Marlies-
101 - 2022-03-10529Marlies-Wolves-
103 - 2022-03-12540Punishers-Marlies-
105 - 2022-03-14545Marlies-Moose-
107 - 2022-03-16555Marlies-Rocket-
110 - 2022-03-19572Icehogs-Marlies-
115 - 2022-03-24594Thunderbirds-Marlies-
118 - 2022-03-27608Marlies-Wolfpack-
120 - 2022-03-29620Wolfpack-Marlies-
124 - 2022-04-02640Penguins-Marlies-
126 - 2022-04-04652Marlies-Condors-
128 - 2022-04-06667Admirals-Marlies-
130 - 2022-04-08674Marlies-Senators-
132 - 2022-04-10693Senators-Marlies-
136 - 2022-04-14712Marlies-Punishers-
137 - 2022-04-15720Barracuda-Marlies-
141 - 2022-04-19740Crunch-Marlies-
144 - 2022-04-22759Marlies-Eagles-
146 - 2022-04-24768Little Stars-Marlies-
148 - 2022-04-26778Marlies-Little Stars-
150 - 2022-04-28794Moose-Marlies-
151 - 2022-04-29797Marlies-Reign-
156 - 2022-05-04821Crunch-Marlies-
157 - 2022-05-05833Marlies-Barracuda-
159 - 2022-05-07842Marlies-Heat-
Trade Deadline --- Trades can’t be done after this day is simulated!
161 - 2022-05-09854Reign-Marlies-
165 - 2022-05-13872Bears-Marlies-
166 - 2022-05-14880Marlies-Phantoms-
169 - 2022-05-17896Marlies-Heat-
171 - 2022-05-19903Bears-Marlies-
176 - 2022-05-24926Marlies-Sound Tigers-
177 - 2022-05-25930Wolves-Marlies-
179 - 2022-05-27941Marlies-Barracuda-
181 - 2022-05-29955Rocket-Marlies-
185 - 2022-06-02978Rocket-Marlies-
187 - 2022-06-04983Marlies-Phantoms-
191 - 2022-06-081001Marlies-Comets-
193 - 2022-06-101011Eagles-Marlies-
199 - 2022-06-161035Wolves-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance16,9228,421
Attendance PCT94.01%93.57%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
31 2816 - 93.86% 83,835$754,514$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
542,026$ 1,789,500$ 1,500,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,948$ 395,506$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,598,882$ 156 12,278$ 1,915,368$




Marlies Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA