Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Please rotate your device to landscape mode for a better experience.
Connexion

Wranglers
GP: 80 | W: 42 | L: 33 | OTL: 5 | P: 89
GF: 336 | GA: 333 | PP%: 21.80% | PK%: 79.82%
DG: Steve Landry | Morale : 46 | Moyenne d’équipe : 64

Centre de jeu
Senators
42-29-9, 93pts
5
FINAL
4 Wranglers
42-33-5, 89pts
Team Stats
W4SéquenceW1
22-17-1Fiche domicile21-17-2
20-12-8Fiche domicile21-16-3
5-4-1Derniers 10 matchs4-6-0
4.10Buts par match 4.20
4.05Buts contre par match 4.16
25.50%Pourcentage en avantage numérique21.80%
78.70%Pourcentage en désavantage numérique79.82%
Wranglers
42-33-5, 89pts
5
FINAL
3 Rockets
39-36-5, 83pts
Team Stats
W1SéquenceL2
21-17-2Fiche domicile21-17-2
21-16-3Fiche domicile18-19-3
4-6-0Derniers 10 matchs5-5-0
4.20Buts par match 3.91
4.16Buts contre par match 4.13
21.80%Pourcentage en avantage numérique22.26%
79.82%Pourcentage en désavantage numérique77.74%
Meneurs d'équipe
Buts
Peter Cehlarik
63
Passes
Peter Cehlarik
76
Points
Peter Cehlarik
139
Plus/Moins
Dominik Masin
13
Victoires
Vitek Vanecek
33
Pourcentage d’arrêts
Vitek Vanecek
0.874

Statistiques d’équipe
Buts pour
336
4.20 GFG
Tirs pour
2629
32.86 Avg
Pourcentage en avantage numérique
21.8%
63 GF
Début de zone offensive
36.3%
Buts contre
333
4.16 GAA
Tirs contre
2510
31.38 Avg
Pourcentage en désavantage numérique
79.8%%
69 GA
Début de la zone défensive
35.8%
Informations de l'équipe

Directeur généralSteve Landry
EntraîneurCraig MacTavish
DivisionFritz-Kraatz
ConférenceRobert-Lebel
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,821
Billets de saison300


Informations de la formation

Équipe Pro33
Équipe Mineure20
Limite contact 53 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Peter CehlarikX100.007244827274787777757875657362544369730241900,000$
2Barclay GoodrowX100.008229777376757571676973756862543266720261900,000$
3Jesper Bratt (R)X100.006946747476787474757572647655465851710212900,000$
4Nico SturmX100.006929877481818069737863707160584166710242900,000$
5Phillip DanaultX100.007231757376757974716376707461553370700261900,000$
6Chandler StephensonX100.007138827667727372717468607650543645690251750,000$
7Ryan Donato (R)X100.007438776678677368766976526951454366670232850,000$
8Taylor Raddysh (R)X100.006247836972686373716568637045455466670213750,000$
9Tanner Jeannot (R)X100.007941667177647571627264636645465368660222600,000$
10Vladislav Kamenev (R)X100.007331765773697171645775627546454466650232800,000$
11Vitali Kravtsov (R)X100.007143766665647267656569596843436067640201500,000$
12Kaapo Kakko (R)X100.005844705763685368636258486840407936590182500,000$
13Frank CorradoX100.007040747476727770617163736069543366710261900,000$
14Dominik Masin (R)X100.007031887273737262386650805757494466700231700,000$
15Erik Brannstrom (R)X100.006129757764627988478667754653456566700202800,000$
16Christian Jaros (R)X100.007029816969667067427349765551493966680231700,000$
17Petteri LindbohmX100.006139756869717372516772735956553127680262800,000$
18Trevor CarrickX100.006238778167677677437655674450512966680252750,000$
19Darren Raddysh (R)X100.006527946762716751476938674251474228640233600,000$
Rayé
1Radim Zohorna (R)X100.005941766372756462585771476048464219610232650,000$
2Ivan Chekhovich (R)X100.006426785077576162606278406642425619600203600,000$
3Skyler Brind'Amour (R)X100.004634785355705848555657585642425519550203600,000$
4Demetrios Koumontzis (R)X100.004331625653575257696459334841415119530191500,000$
5Filip Hallander (R)X100.004631686049505057466150424641416020520191500,000$
6Lucas Feuk (R)X100.004735595649574954475548385740406920500182500,000$
7Cole Schwindt (R)X100.006037494767386654484560424940408220500182500,000$
8Brandon Hickey (R)X100.006927866466687059407247805754483519680233900,000$
9Zac Jones (R)X100.004534777954535974417758684143436819630192500,000$
10Yegor Zaitsev (R)X100.005833644972715057256045564043455019570212500,000$
11Tim Berni (R)X100.005930584253515758195851363341415420500191500,000$
MOYENNE D’ÉQUIPE100.00643575656866676656676260594947494464
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Vitek Vanecek100.00617269636371785762746448494381660233800,000$
2Joel Hofer100.00695666767055476164587442426377600191500,000$
Rayé
1Collin Delia100.00735765726960525863566843434920610252700,000$
MOYENNE D’ÉQUIPE100.0068626770676259596363694445525962
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Craig MacTavish78756975766752CAN572800,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peter CehlarikWranglers (Cal)LW80637613955151318936611223617.21%45186023.261524394624221392338245.48%3327833051.49141009136
2Nico SturmWranglers (Cal)C80427111381401301342657216515.85%34169621.2110223229244112111656049.07%23074526011.33000001093
3Barclay GoodrowWranglers (Cal)RW8040488866601741052257314217.78%41168421.061112232924411231764348.48%1324530111.0401000639
4Erik BrannstromWranglers (Cal)D8016627837607313924187926.64%96180822.6061420392431124136200%04766000.8600000332
5Chandler StephensonWranglers (Cal)C80263359-51601231212067913512.62%21134416.815712221911122703350.48%9473921000.8800000316
6Frank CorradoWranglers (Cal)D80114354101220137116107475910.28%130212926.6251116172620002261000%03278300.5101000111
7Jesper BrattWranglers (Cal)LW75212445-9600135812096213510.05%24123516.47279131820004493156.10%414315000.7323000010
8Phillip DanaultWranglers (Cal)LW80211940-8400110951736210612.14%29118714.84213526112112253150.36%2743035000.6700000430
9Tanner JeannotWranglers (Cal)LW80132336-22809755118356611.02%1883910.501125137000002039.39%33216000.8600000124
10Dominik MasinWranglers (Cal)D803323513100651148228473.66%119161020.130449870111314000%0968100.4300000012
11Ryan DonatoWranglers (Cal)C80151934-93209459104357214.42%1596112.01101313000092155.66%3271816000.7100000032
12Taylor RaddyshWranglers (Cal)RW8022113342206563116377018.97%27100512.57123665000002353.13%32913000.6600000113
13Christian JarosWranglers (Cal)D8061824038074847522338.00%100141217.6622451330110151300%0848000.3400000101
14Vladislav KamenevWranglers (Cal)C8091120-2160463059162615.25%185717.1400000000000051.79%16885000.7000000020
15Vitali KravtsovWranglers (Cal)LW80119208195682894276111.70%105556.95000020110641060.00%15114000.7200001110
16Trevor CarrickWranglers (Cal)D8021416126054745214363.85%44109213.66112245000080100%01435000.2900000001
17Brandon HickeyWranglers (Cal)D4811314-16045624720232.13%66103321.5400021190000117000%0330000.2700000002
18Kaapo KakkoWranglers (Cal)RW6065118220363038111715.79%115989.9800004000000158.33%1235000.3700000000
19Petteri LindbohmWranglers (Cal)D372810-31802032206810.00%2646912.69101312000027000%0138100.4300000000
20Skyler Brind'AmourWranglers (Cal)C6000100000000%020.4800000000020025.00%40000000000000
21Darren RaddyshWranglers (Cal)D24000-300361110%4964.010000000000000%00200000000000
22Ivan ChekhovichWranglers (Cal)LW6000100100000%0111.99000000000100025.00%40000000000000
23Radim ZohornaWranglers (Cal)LW6000100000000%040.730000000000000%00000000000000
24Zac JonesWranglers (Cal)D6000-220000000%1274.600000000000000%00000000000000
25Yegor ZaitsevWranglers (Cal)D6000000000000%010.180000000001000%00000000000000
Statistiques d’équipe totales ou en moyenne14743305398692568410168115172598846153012.70%8792324215.776310817123522617916472099401549.76%4628476544670.7539101404442
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Vitek VanecekWranglers (Cal)67332340.8743.933464412271801917730.50086118420
2Joel HoferWranglers (Cal)3191010.8584.3713312197685385400.66731951011
3Collin DeliaWranglers (Cal)20000.8106.86350042190000011000
Statistiques d’équipe totales ou en moyenne100423350.8694.0748316232825071311113118080431


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Barclay GoodrowWranglers (Cal)RW261993-01-01CANNo215 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------
Brandon HickeyWranglers (Cal)D231996-01-01CANYes201 Lbs6 ft2NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm900,000$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------
Chandler StephensonWranglers (Cal)C251994-01-01CANNo190 Lbs5 ft11NoNoTrade2024-10-20NoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------
Christian JarosWranglers (Cal)D231996-01-01SVKYes222 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm700,000$0$0$No---------------------------
Cole SchwindtWranglers (Cal)RW182001-01-01CANYes183 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Collin DeliaWranglers (Cal)G251994-01-01USANo207 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm700,000$0$0$No700,000$--------700,000$--------No--------
Darren RaddyshWranglers (Cal)D231996-01-01CANYes200 Lbs6 ft1NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$0$0$No600,000$600,000$-------600,000$600,000$-------NoNo-------
Demetrios KoumontzisWranglers (Cal)LW192000-01-01USAYes190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Dominik MasinWranglers (Cal)D231996-01-01CZEYes196 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm700,000$0$0$No---------------------------
Erik BrannstromWranglers (Cal)D201999-01-01SWEYes185 Lbs5 ft10NoNoFree AgentNoNo22024-09-07FalseFalsePro & Farm800,000$0$0$No800,000$--------800,000$--------No--------
Filip HallanderWranglers (Cal)C192000-01-01SWEYes190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Frank CorradoWranglers (Cal)D261993-01-01CANNo195 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------
Ivan ChekhovichWranglers (Cal)LW201999-01-01RUSYes187 Lbs5 ft10NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$0$0$No600,000$600,000$-------600,000$600,000$-------NoNo-------
Jesper BrattWranglers (Cal)LW211998-01-01SWEYes185 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm900,000$0$0$No950,000$--------750,000$--------No--------
Joel HoferWranglers (Cal)G192000-01-01CANNo179 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Kaapo KakkoWranglers (Cal)RW182001-01-01FINYes205 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Lucas FeukWranglers (Cal)LW182001-01-01SWEYes190 Lbs6 ft0NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Nico SturmWranglers (Cal)C241995-01-01DEUNo207 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm900,000$0$0$No950,000$--------750,000$--------No--------
Peter CehlarikWranglers (Cal)LW241995-01-01SVNNo185 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------
Petteri LindbohmWranglers (Cal)D261993-01-01FINNo209 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm800,000$0$0$No850,000$--------750,000$--------No--------
Phillip DanaultWranglers (Cal)LW261993-01-01CANNo201 Lbs6 ft0NoNoTrade2024-10-20NoNo12024-09-07FalseFalsePro & Farm900,000$0$0$No---------------------------
Radim ZohornaWranglers (Cal)LW231996-01-01CZEYes229 Lbs6 ft6NoNoN/ANoNo2FalseFalsePro & Farm650,000$0$0$No700,000$--------600,000$--------No--------
Ryan DonatoWranglers (Cal)C231996-01-01CANYes193 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm850,000$0$0$No900,000$--------800,000$--------No--------
Skyler Brind'AmourWranglers (Cal)C201999-01-01USAYes185 Lbs6 ft2NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$0$0$No600,000$600,000$-------600,000$600,000$-------NoNo-------
Tanner JeannotWranglers (Cal)LW221997-01-01CANYes214 Lbs6 ft2NoNoTrade2024-10-20NoNo2FalseFalsePro & Farm600,000$0$0$No600,000$--------600,000$--------No--------
Taylor RaddyshWranglers (Cal)RW211998-01-01CANYes198 Lbs6 ft3NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm750,000$0$0$No750,000$750,000$-------750,000$750,000$-------NoNo-------
Tim BerniWranglers (Cal)D192000-01-01CHEYes181 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Trevor CarrickWranglers (Cal)D251994-01-01CANNo171 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm750,000$0$0$No825,000$--------700,000$--------No--------
Vitali KravtsovWranglers (Cal)LW201999-01-01RUSYes186 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Vitek VanecekWranglers (Cal)G231996-01-01CZENo190 Lbs5 ft11NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm800,000$0$0$No800,000$800,000$-------800,000$800,000$-------NoNo-------
Vladislav KamenevWranglers (Cal)C231996-01-01RUSYes194 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm800,000$0$0$No825,000$--------700,000$--------No--------
Yegor ZaitsevWranglers (Cal)D211998-01-01RUSYes187 Lbs6 ft0NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Zac JonesWranglers (Cal)D192000-01-01USAYes176 Lbs5 ft10NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3321.97195 Lbs6 ft11.82689,394$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peter CehlarikNico SturmBarclay Goodrow40122
2Jesper BrattChandler StephensonTaylor Raddysh30122
3Phillip DanaultRyan DonatoKaapo Kakko20122
4Tanner JeannotVladislav KamenevPeter Cehlarik10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Frank CorradoDominik Masin40122
2Erik BrannstromTrevor Carrick30122
3Christian JarosPetteri Lindbohm20122
4Darren RaddyshDominik Masin10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peter CehlarikNico SturmBarclay Goodrow60122
2Jesper BrattChandler StephensonTaylor Raddysh40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Frank CorradoDominik Masin60122
2Erik BrannstromTrevor Carrick40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Peter CehlarikBarclay Goodrow60122
2Nico SturmJesper Bratt40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Frank CorradoDominik Masin60122
2Erik BrannstromTrevor Carrick40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Peter Cehlarik60122Frank CorradoDominik Masin60122
2Barclay Goodrow40122Erik BrannstromTrevor Carrick40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Peter CehlarikBarclay Goodrow60122
2Nico SturmJesper Bratt40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Frank CorradoDominik Masin60122
2Erik BrannstromTrevor Carrick40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peter CehlarikNico SturmBarclay GoodrowFrank CorradoDominik Masin
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peter CehlarikNico SturmBarclay GoodrowFrank CorradoDominik Masin
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Nico Sturm, Peter Cehlarik, Chandler StephensonPhillip Danault, Barclay GoodrowPhillip Danault
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Frank Corrado, Erik Brannstrom, Petteri LindbohmDominik MasinChristian Jaros, Petteri Lindbohm
Tirs de pénalité
Peter Cehlarik, Barclay Goodrow, Nico Sturm, Jesper Bratt, Phillip Danault
Gardien
#1 : Vitek Vanecek, #2 : Joel Hofer
Lignes d’attaque personnalisées en prolongation
Peter Cehlarik, Barclay Goodrow, Nico Sturm, Jesper Bratt, Phillip Danault, Chandler Stephenson, Taylor Raddysh, Ryan Donato, Tanner Jeannot, Vladislav Kamenev
Lignes de défense personnalisées en prolongation
Frank Corrado, Dominik Masin, Erik Brannstrom, Trevor Carrick, Christian Jaros


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals43001000211291000100054133000000168881.000213657006812214071357818989154312045369113430.77%18477.78%0903175051.60%863172450.06%662134249.33%168993816987551448714
2Americans3200010015114110000008442100010077050.833152338006812214071017818989154311037266912216.67%13376.92%0903175051.60%863172450.06%662134249.33%168993816987551448714
3Barracuda321000001410411000000303211000001110140.6671423370168122140789781898915438145246210330.00%12283.33%1903175051.60%863172450.06%662134249.33%168993816987551448714
4Bears31100100161512110000011921000010056-130.50016254100681221407115781898915431032522724250.00%11190.91%1903175051.60%863172450.06%662134249.33%168993816987551448714
5Canucks21100000811-3110000006511010000026-420.50081321006812214076178189891543691910446233.33%50100.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
6Checkers312000001113-21010000024-22110000099020.3331118291068122140710978189891543913324598337.50%12283.33%0903175051.60%863172450.06%662134249.33%168993816987551448714
7Comets220000001046110000006151100000043141.00010152500681221407807818989154375278354375.00%40100.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
8Condors311000011215-31100000053220100001712-530.50012193100681221407102781898915439524225913215.38%11281.82%0903175051.60%863172450.06%662134249.33%168993816987551448714
9Crunch21001000422110000002111000100021141.00048120068122140755781898915435220163610110.00%8187.50%0903175051.60%863172450.06%662134249.33%168993816987551448714
10Eagles210001003301000010023-11100000010130.75035801681221407667818989154350231845500.00%90100.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
11Firebirds22000000945110000006241100000032141.00091726006812214076178189891543551720418225.00%10280.00%1903175051.60%863172450.06%662134249.33%168993816987551448714
12Griffins312000001016-620200000513-81100000053220.333101626006812214079978189891543972526561000.00%13469.23%0903175051.60%863172450.06%662134249.33%168993816987551448714
13Gulls302000101012-22010001078-11010000034-120.33310172700681221407115781898915439339305811327.27%15193.33%0903175051.60%863172450.06%662134249.33%168993816987551448714
14Icehogs31200000814-620200000412-81100000042220.3338122000681221407947818989154311433305911436.36%16475.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
15Islander431000002116522000000125721100000911-260.750213354006812214071297818989154313244288917423.53%14750.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
16Little Stars21100000121111010000057-21100000074320.500121931006812214076778189891543742014488112.50%7271.43%0903175051.60%863172450.06%662134249.33%168993816987551448714
17Marlies6230100028271312000001112-1311010001715260.5002840680068122140719478189891543173795013826519.23%24579.17%1903175051.60%863172450.06%662134249.33%168993816987551448714
18Moose321000001091220000007341010000036-340.667101424006812214078578189891543842320571400.00%10190.00%2903175051.60%863172450.06%662134249.33%168993816987551448714
19Penguins20200000412-81010000028-61010000024-200.000461000681221407647818989154369231742900.00%6266.67%0903175051.60%863172450.06%662134249.33%168993816987551448714
20Phantoms6320100028244321000001192311010001715280.6672848760068122140717978189891543166627213016531.25%36877.78%0903175051.60%863172450.06%662134249.33%168993816987551448714
21Punishers2010000179-21000000123-11010000056-110.2507132000681221407707818989154375261044400.00%5260.00%0903175051.60%863172450.06%662134249.33%168993816987551448714
22Rockets105400010544955310001030228523000002427-3120.60054911451068122140733578189891543312127109235501326.00%52982.69%0903175051.60%863172450.06%662134249.33%168993816987551448714
23Senators30300000812-42020000079-21010000013-200.00081422106812214079078189891543942730625240.00%15473.33%0903175051.60%863172450.06%662134249.33%168993816987551448714
24Thunderbirds20200000812-41010000035-21010000057-200.00081422006812214076878189891543672616388112.50%8362.50%0903175051.60%863172450.06%662134249.33%168993816987551448714
25Wolfpack21100000510-51010000018-71100000042220.5005813006812214076678189891543591716377114.29%80100.00%1903175051.60%863172450.06%662134249.33%168993816987551448714
Total803633043223363333401817011211631603401816032011731730890.55633654788332681221407262978189891543251088669417062896321.80%3426979.82%7903175051.60%863172450.06%662134249.33%168993816987551448714
_Since Last GM Reset803633043223363333401817011211631603401816032011731730890.55633654788332681221407262978189891543251088669417062896321.80%3426979.82%7903175051.60%863172450.06%662134249.33%168993816987551448714
_Vs Conference50222103121218211725111101020103994251110021011151123560.56021835357121681221407161878189891543153956647510761914322.51%2354780.00%4903175051.60%863172450.06%662134249.33%168993816987551448714
_Vs Division2210902010110100101164000105243911450200058571260.5911101792891068122140770878189891543651268231503922325.00%1122280.36%1903175051.60%863172450.06%662134249.33%168993816987551448714

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8089W133654788326292510886694170632
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8036334322336333
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4018171121163160
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4018163201173173
Derniers 10 matchs
WLOTWOTL SOWSOL
460000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2896321.80%3426979.82%7
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
78189891543681221407
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
903175051.60%863172450.06%662134249.33%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
168993816987551448714


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
26Rockets2Wranglers5WR1Sommaire du match
520Wranglers4Rockets8LSommaire du match
732Wranglers7Marlies6WXSommaire du match
837Wranglers4Rockets6LR1Sommaire du match
1051Rockets6Wranglers7WXXSommaire du match
1361Wranglers4Phantoms5LSommaire du match
1674Phantoms3Wranglers5WSommaire du match
1890Wranglers7Rockets3WR1Sommaire du match
2099Wranglers6Admirals3WSommaire du match
21104Marlies5Wranglers3LSommaire du match
25127Rockets4Wranglers5WR1Sommaire du match
28144Wranglers4Marlies5LSommaire du match
30152Gulls5Wranglers3LSommaire du match
32170Griffins7Wranglers3LSommaire du match
35182Wranglers3Americans2WSommaire du match
39199Bears3Wranglers7WSommaire du match
43217Eagles3Wranglers2LXSommaire du match
45225Wranglers4Icehogs2WSommaire du match
47234Wranglers4Wolfpack2WSommaire du match
49246Firebirds2Wranglers6WSommaire du match
51259Wranglers5Thunderbirds7LSommaire du match
54276Americans4Wranglers8WSommaire du match
58294Little Stars7Wranglers5LSommaire du match
60305Wranglers2Crunch1WXSommaire du match
64324Moose2Wranglers4WSommaire du match
66334Wranglers3Gulls4LSommaire du match
68347Penguins8Wranglers2LSommaire du match
71365Wranglers6Islander3WSommaire du match
73375Gulls3Wranglers4WXXSommaire du match
75386Wranglers5Admirals2WSommaire du match
78399Wranglers6Marlies4WSommaire du match
79408Wolfpack8Wranglers1LSommaire du match
83427Moose1Wranglers3WSommaire du match
85438Wranglers5Condors6LXXSommaire du match
87446Wranglers5Bears6LXSommaire du match
89458Wranglers2Condors6LSommaire du match
90464Islander3Wranglers8WSommaire du match
93480Wranglers4Americans5LXSommaire du match
95488Marlies4Wranglers3LSommaire du match
99509Thunderbirds5Wranglers3LSommaire du match
105533Marlies3Wranglers5WSommaire du match
107546Wranglers5Griffins3WSommaire du match
109556Barracuda0Wranglers3WSommaire du match
111570Wranglers3Checkers5LSommaire du match
114585Comets1Wranglers6WSommaire du match
116592Wranglers7Little Stars4WSommaire du match
119610Wranglers2Canucks6LSommaire du match
120615Islander2Wranglers4WSommaire du match
125636Griffins6Wranglers2LSommaire du match
127653Wranglers5Punishers6LSommaire du match
129660Condors3Wranglers5WSommaire du match
132681Wranglers1Senators3LSommaire du match
133688Checkers4Wranglers2LSommaire du match
136708Icehogs6Wranglers4LSommaire du match
138717Wranglers3Moose6LSommaire du match
141733Canucks5Wranglers6WSommaire du match
143748Wranglers6Checkers4WSommaire du match
145759Wranglers7Phantoms6WXSommaire du match
147765Phantoms3Wranglers5WSommaire du match
149784Icehogs6Wranglers0LSommaire du match
153797Wranglers6Phantoms4WSommaire du match
155811Phantoms3Wranglers1LSommaire du match
158826Wranglers2Penguins4LSommaire du match
160836Wranglers3Firebirds2WSommaire du match
161845Crunch1Wranglers2WSommaire du match
163855Wranglers3Islander8LSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
166867Punishers3Wranglers2LXXSommaire du match
169882Wranglers5Admirals3WSommaire du match
171894Wranglers4Comets3WSommaire du match
172896Admirals4Wranglers5WXSommaire du match
174913Wranglers4Rockets7LR1Sommaire du match
176924Rockets6Wranglers4LSommaire du match
178934Wranglers5Barracuda3WSommaire du match
180941Wranglers1Eagles0WSommaire du match
183957Wranglers6Barracuda7LSommaire du match
184962Rockets4Wranglers9WR1Sommaire du match
189987Senators4Wranglers3LSommaire du match
1931006Bears6Wranglers4LSommaire du match
1961023Senators5Wranglers4LSommaire du match
1971027Wranglers5Rockets3WR1Sommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets7040
Assistance75,48037,363
Assistance PCT94.35%93.41%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2821 - 94.04% 177,926$7,117,024$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
3,094,817$ 2,275,000$ 2,275,000$ 800,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
11,262$ 2,294,748$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 15,223$ 0$




Wranglers Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA