Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Please rotate your device to landscape mode for a better experience.
Connexion

Bears
GP: 80 | W: 44 | L: 31 | OTL: 5 | P: 93
GF: 319 | GA: 309 | PP%: 19.40% | PK%: 77.25%
DG: Jean-Manuel Estrada | Morale : 49 | Moyenne d’équipe : 65

Centre de jeu
Bears
44-31-5, 93pts
2
FINAL
5 Canucks
44-29-7, 95pts
Team Stats
W1SéquenceL2
22-15-3Fiche domicile23-14-3
22-16-2Fiche domicile21-15-4
5-4-1Derniers 10 matchs4-6-0
3.99Buts par match 4.45
3.86Buts contre par match 3.91
19.40%Pourcentage en avantage numérique24.83%
77.25%Pourcentage en désavantage numérique79.88%
Thunderbirds
36-37-7, 79pts
4
FINAL
7 Bears
44-31-5, 93pts
Team Stats
L1SéquenceW1
17-18-5Fiche domicile22-15-3
19-19-2Fiche domicile22-16-2
4-4-2Derniers 10 matchs5-4-1
4.01Buts par match 3.99
4.14Buts contre par match 3.86
20.89%Pourcentage en avantage numérique19.40%
75.30%Pourcentage en désavantage numérique77.25%
Meneurs d'équipe
Buts
Kerby Rychel
51
Passes
Sam Carrick
71
Points
Kerby Rychel
119
Plus/Moins
Sam Carrick
12
Victoires
Garret Sparks
37
Pourcentage d’arrêts
Garret Sparks
0.885

Statistiques d’équipe
Buts pour
319
3.99 GFG
Tirs pour
2612
32.65 Avg
Pourcentage en avantage numérique
19.4%
65 GF
Début de zone offensive
36.0%
Buts contre
309
3.86 GAA
Tirs contre
2605
32.56 Avg
Pourcentage en désavantage numérique
77.2%%
38 GA
Début de la zone défensive
36.1%
Informations de l'équipe

Directeur généralJean-Manuel Estrada
EntraîneurGerard Gallant
DivisionMax-Sillig
ConférenceLouis-Magnus
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,792
Billets de saison300


Informations de la formation

Équipe Pro32
Équipe Mineure18
Limite contact 50 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Kerby RychelX100.008649748176648077687778697268614070740253950,000$
2Jerry D'AmigoX100.006634837572837476687475677566562667720281900,000$
3Sam CarrickX100.007738757472668373707873736673632966720271800,000$
4Kevin RooneyX100.006545777268747568787175657556553261700261750,000$
5Tanner Laczynski (R)X100.006335807867766676717671647848495073700222900,000$
6Mason Appleton (R)X100.005836827470697472808174596050484670690233750,000$
7Eric KarlssonX100.008033747277727466687075615954523535680251850,000$
8Cole SmithX100.007547866070646380707368636550524056680242800,000$
9Vincent DunnX100.006838766771607672717166636647493769660241500,000$
10Nicholas Caamano (R)X100.006143726963636567677063647144445655640213500,000$
11Isaac Ratcliffe (R)X100.006732784766696659566475496142426169600204500,000$
12Kirill Maksimov (R)X100.006126765474556463645768455342425535580204500,000$
13Tommy VannelliX100.006331897372737573568163776167493968720242900,000$
14Michael Prapavessis (R)X100.006833867368707268517457775755504155700233500,000$
15Mikko VainonenX100.006929787072747372547165745572532748700251650,000$
16Emil Johansson (R)X100.006147796865696665597166715554493873660233750,000$
17Ryan GravesX100.006134796867687167447051694948493059650242675,000$
18Jesper PetterssonX100.006345746466696263656670576255502922640242675,000$
Rayé
1Colby CaveX100.005326766673566162545977585851512620620251600,000$
2Blake Speers (R)X100.006336665771605665556977445744444522610223900,000$
3Tim Gettinger (R)X100.006132695769635963526366376943434620580212600,000$
4Jeremy Michel (R)X100.005217615034503262544253426940406120490182500,000$
5Gianluca CurcurutoX100.007534797367727269587263736266533058700251850,000$
6Will Reilly (R)X100.004736797765476268257660544746454120630224600,000$
7David Farrance (R)X100.005834725860656059376859695042425420610204550,000$
8Mackenze Stewart (R)X100.005846706360666360666669515447463320610233500,000$
9Mario Ferraro (R)X100.005633816062676660306643694243444720610214500,000$
10Zack Hayes (R)X100.006533585869645251255748543942425720570201400,000$
11Jakob Stenqvist (R)X100.005727746443466163407045533943434320560213500,000$
12Arvid Henrikson (R)X100.005328626464594550305955573243434620560213500,000$
MOYENNE D’ÉQUIPE100.00643576666665666656696561595148414464
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Garret Sparks100.00777485666974785870837164543481720262900,000$
2Artyom Zagidulin100.00706467776862606161616645475381630243900,000$
Rayé
MOYENNE D’ÉQUIPE100.0074697672696869606672695551448168
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Gerard Gallant65666472386557CAN41550,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kerby RychelBears (Was)LW795168119859519410033610021415.18%49176722.371121325729312361157548.94%2847935131.35021001066
2Sam CarrickBears (Was)C793271103123401341532027213315.84%50172321.821123343229111231153150.76%24315531001.2012000476
3Jerry D'AmigoBears (Was)RW72383876712070772116612718.01%37142419.7991019352050002223142.50%1203930111.0711000554
4Mason AppletonBears (Was)RW80284674-812067772245813012.50%25137917.249132232247000003056.14%575015011.0700000222
5Tanner LaczynskiBears (Was)C80314273-152201101082266211013.72%26136817.1141115222120004677148.80%9575121001.0702000234
6Tommy VannelliBears (Was)D80154156-11206315916066729.38%111222127.777714303271122153110%14671000.5000000325
7Mikko VainonenBears (Was)D7784553-950014914910033578.00%120196725.5541014183140001113000%04254000.5400000201
8Kevin RooneyBears (Was)C78252550418092991766512014.20%1999912.810000100000465250.00%5163619011.0011000133
9Cole SmithBears (Was)LW77242246-52014787136406917.65%32116215.10461014152000074053.66%411424010.7900000222
10Nicholas CaamanoBears (Was)RW75162238-122008369152447310.53%1391212.16202857000001150.00%222521000.8300000132
11Gianluca CurcurutoBears (Was)D7842529-516011310610241313.92%98162420.831236201000492000%02144000.3600000000
12Vincent DunnBears (Was)C80131528-19180655516347847.98%216918.641122240001154045.65%2302211000.8100000123
13Michael PrapavessisBears (Was)D6822123116051957128272.82%67134519.791123120000075000%0448000.3400000000
14Eric KarlssonBears (Was)LW5061622-620088529335506.45%1570814.170002830001480060.87%232412000.6201000011
15Nicolas Aube-KubelCapitalsRW85111654013164091912.50%718322.901455340001172135.71%1447011.7500000300
16Colby CaveBears (Was)C45761322020183592720.00%63738.29000000000111135.29%1756000.7000000100
17Ryan GravesBears (Was)D754913-106033665619187.14%63101313.5100029500003100%0325000.2600000001
18Emil JohanssonBears (Was)D8021012-12301036935920253.39%82114714.34000024011170010%01241000.2100101000
19Isaac RatcliffeBears (Was)LW806612-1720913347163012.77%1690411.310001110001431036.36%2269000.2700000020
20Blake SpeersBears (Was)C48257-21604110479184.26%64429.21000070001360046.88%3255000.3200000010
21Kirill MaksimovBears (Was)RW54224-17603016237248.70%54247.8600000000000066.67%924000.1900000000
22Jesper PetterssonBears (Was)D350330120191712590%132988.5400002000010000%019000.2000000000
Statistiques d’équipe totales ou en moyenne1478321549870-9936915170916552671851146712.02%8812408416.30651091742692721358281067431549.69%4776546542280.7239201373940
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Garret SparksBears (Was)72372640.8853.6940180124721571055440.60056911412
2Artyom ZagidulinBears (Was)207510.8724.258040057444222200.66731169000
Statistiques d’équipe totales ou en moyenne92443150.8833.78482201304260112776488080412


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Artyom ZagidulinBears (Was)G241995-01-01RUSNo181 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm900,000$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------
Arvid HenriksonBears (Was)D211998-01-01SWEYes212 Lbs6 ft5NoNoN/ANoNo3FalseFalsePro & Farm500,000$0$0$No500,000$500,000$-------500,000$500,000$-------NoNo-------
Blake SpeersBears (Was)C221997-01-01CANYes185 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm900,000$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------
Colby CaveBears (Was)C251994-01-01CANNo185 Lbs6 ft1NoNoFree AgentNoNo12024-09-17FalseFalsePro & Farm600,000$0$0$No---------------------------
Cole SmithBears (Was)LW241995-01-01CANNo195 Lbs6 ft3NoNoFree AgentNoNo22024-09-17FalseFalsePro & Farm800,000$0$0$No800,000$--------800,000$--------No--------
David FarranceBears (Was)D201999-01-01USAYes191 Lbs6 ft0NoNoFree AgentNoNo42024-09-17FalseFalsePro & Farm550,000$0$0$No550,000$550,000$550,000$------550,000$550,000$550,000$------NoNoNo------
Emil JohanssonBears (Was)D231996-01-01SWEYes189 Lbs5 ft11NoNoFree AgentNoNo32024-09-17FalseFalsePro & Farm750,000$0$0$No750,000$750,000$-------750,000$750,000$-------NoNo-------
Eric KarlssonBears (Was)LW251994-01-01SWENo161 Lbs5 ft11NoNoTrade2025-03-20NoNo1FalseFalsePro & Farm850,000$0$0$No---------------------------
Garret SparksBears (Was)G261993-01-01USANo207 Lbs6 ft2NoNoFree AgentNoNo22024-10-17FalseFalsePro & Farm900,000$0$0$No900,000$--------900,000$--------No--------
Gianluca CurcurutoBears (Was)D251994-01-01CANNo195 Lbs6 ft0NoNoFree AgentNoNo12024-09-17FalseFalsePro & Farm850,000$0$0$No---------------------------
Isaac RatcliffeBears (Was)LW201999-01-01CANYes200 Lbs6 ft6NoNoFree AgentNoNo42024-09-17FalseFalsePro & Farm500,000$0$0$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------
Jakob StenqvistBears (Was)D211998-01-01SWEYes179 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm500,000$0$0$No500,000$500,000$-------500,000$500,000$-------NoNo-------
Jeremy MichelBears (Was)LW182001-01-01CANYes176 Lbs6 ft1NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$0$0$No500,000$--------500,000$--------No--------Lien
Jerry D'AmigoBears (Was)RW281991-01-01USANo208 Lbs5 ft11NoNoFree AgentNoNo12024-11-08FalseFalsePro & Farm900,000$0$0$No---------------------------
Jesper PetterssonBears (Was)D241995-01-01SWENo189 Lbs5 ft9NoNoFree AgentNoNo22024-09-17FalseFalsePro & Farm675,000$0$0$No675,000$--------675,000$--------No--------
Kerby RychelBears (Was)LW251994-01-01CANNo185 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm950,000$0$0$No950,000$950,000$-------950,000$950,000$-------NoNo-------
Kevin RooneyBears (Was)C261993-01-01USANo190 Lbs6 ft2NoNoFree AgentNoNo12024-10-19FalseFalsePro & Farm750,000$0$0$No---------------------------
Kirill MaksimovBears (Was)RW201999-01-01RUSYes207 Lbs6 ft2NoNoFree AgentNoNo42024-09-17FalseFalsePro & Farm500,000$0$0$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------
Mackenze StewartBears (Was)D231996-01-01CANYes230 Lbs6 ft4NoNoFree AgentNoNo32024-09-17FalseFalsePro & Farm500,000$0$0$No500,000$500,000$-------500,000$500,000$-------NoNo-------
Mario FerraroBears (Was)D211998-01-01CANYes209 Lbs6 ft0NoNoFree AgentNoNo42024-09-17FalseFalsePro & Farm500,000$0$0$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------
Mason AppletonBears (Was)RW231996-01-01USAYes193 Lbs6 ft2NoNoTrade2024-10-17NoNo32024-09-07FalseFalsePro & Farm750,000$0$0$No850,000$950,000$-------750,000$750,000$-------NoNo-------
Michael PrapavessisBears (Was)D231996-01-01CANYes185 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm500,000$0$0$No500,000$500,000$-------500,000$500,000$-------NoNo-------
Mikko VainonenBears (Was)D251994-01-01FINNo222 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm650,000$0$0$No---------------------------
Nicholas CaamanoBears (Was)RW211998-01-01CANYes201 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm500,000$0$0$No500,000$500,000$-------500,000$500,000$-------NoNo-------
Ryan GravesBears (Was)D241995-01-01CANNo225 Lbs6 ft4NoNoFree AgentNoNo22024-09-17FalseFalsePro & Farm675,000$0$0$No675,000$--------675,000$--------No--------
Sam CarrickBears (Was)C271992-01-01CANNo188 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm800,000$0$0$No---------------------------
Tanner LaczynskiBears (Was)C221997-01-01USAYes205 Lbs6 ft1NoNoTrade2024-10-17NoNo2FalseFalsePro & Farm900,000$0$0$No1,200,000$--------700,000$--------No--------
Tim GettingerBears (Was)LW211998-01-01USAYes220 Lbs6 ft6NoNoFree AgentNoNo22024-10-19FalseFalsePro & Farm600,000$0$0$No600,000$--------600,000$--------No--------
Tommy VannelliBears (Was)D241995-01-01USANo185 Lbs6 ft2NoNoFree AgentNoNo22024-09-17FalseFalsePro & Farm900,000$0$0$No900,000$--------900,000$--------No--------
Vincent DunnBears (Was)C241995-01-01CANNo185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No---------------------------
Will ReillyBears (Was)D221997-01-01CANYes196 Lbs6 ft2NoNoFree AgentNoNo42024-09-17FalseFalsePro & Farm600,000$0$0$No600,000$600,000$600,000$------600,000$600,000$600,000$------NoNoNo------
Zack HayesBears (Was)D201999-01-01CANYes222 Lbs6 ft3NoNoFree AgentNoNo12024-09-17FalseFalsePro & Farm400,000$0$0$No---------------------------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3223.03197 Lbs6 ft12.34676,563$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Kerby RychelSam CarrickJerry D'Amigo40122
2Eric KarlssonTanner LaczynskiMason Appleton30122
3Cole SmithKevin RooneyNicholas Caamano20122
4Isaac RatcliffeVincent DunnKirill Maksimov10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tommy VannelliMikko Vainonen40122
2Michael PrapavessisEmil Johansson30122
3Ryan GravesJesper Pettersson20122
4Tommy VannelliMikko Vainonen10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Kerby RychelSam CarrickJerry D'Amigo60122
2Eric KarlssonTanner LaczynskiMason Appleton40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tommy VannelliMikko Vainonen60122
2Michael PrapavessisEmil Johansson40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Kerby RychelJerry D'Amigo60122
2Sam CarrickTanner Laczynski40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tommy VannelliMikko Vainonen60122
2Michael PrapavessisEmil Johansson40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Kerby Rychel60122Tommy VannelliMikko Vainonen60122
2Jerry D'Amigo40122Michael PrapavessisEmil Johansson40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Kerby RychelJerry D'Amigo60122
2Sam CarrickTanner Laczynski40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tommy VannelliMikko Vainonen60122
2Michael PrapavessisEmil Johansson40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Kerby RychelSam CarrickJerry D'AmigoTommy VannelliMikko Vainonen
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Kerby RychelSam CarrickJerry D'AmigoTommy VannelliMikko Vainonen
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Kevin Rooney, Cole Smith, Vincent DunnKevin Rooney, Cole SmithVincent Dunn
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Ryan Graves, Jesper Pettersson, Michael PrapavessisRyan GravesJesper Pettersson, Michael Prapavessis
Tirs de pénalité
Kerby Rychel, Jerry D'Amigo, Sam Carrick, Tanner Laczynski, Kevin Rooney
Gardien
#1 : Garret Sparks, #2 : Artyom Zagidulin
Lignes d’attaque personnalisées en prolongation
Kerby Rychel, Jerry D'Amigo, Sam Carrick, Tanner Laczynski, Kevin Rooney, Mason Appleton, Eric Karlsson, Cole Smith, Vincent Dunn, Nicholas Caamano
Lignes de défense personnalisées en prolongation
Tommy Vannelli, Mikko Vainonen, Michael Prapavessis, Emil Johansson, Ryan Graves


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001082110000005411100000054141.000101828008011811496182593184123782210375120.00%50100.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
2Americans220000001257110000005321100000072541.000122133008011811497582593184123661945014321.43%2150.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
3Barracuda32100000981110000004222110000056-140.6679172600801181149101825931841238631106914214.29%50100.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
4Canucks312000001517-21010000057-2211000001010020.3331527420080118114910182593184123992512588225.00%6183.33%0864170850.59%827171248.31%676131951.25%172196816687241441743
5Checkers43100000181531100000076132100000119260.750183149008011811491348259318412314143146917317.65%7271.43%0864170850.59%827171248.31%676131951.25%172196816687241441743
6Comets623001002431-7321000001614230200100817-950.4172445690080118114919282593184123218645411020420.00%22386.36%0864170850.59%827171248.31%676131951.25%172196816687241441743
7Condors411011001213-1210001005502010100078-150.62512203210801181149139825931841231143669220315.00%30100.00%1864170850.59%827171248.31%676131951.25%172196816687241441743
8Crunch32100000171252110000010911100000073440.667173047008011811499882593184123783288212325.00%40100.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
9Eagles30200100612-61000010034-12020000038-510.1676111700801181149838259318412310137145410110.00%7357.14%0864170850.59%827171248.31%676131951.25%172196816687241441743
10Firebirds963000004235754100000241774220000018180120.6674267109008011811493058259318412330010240191551323.64%20765.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
11Griffins3120000012111211000009631010000035-220.3331221332080118114993825931841239226165915426.67%8362.50%0864170850.59%827171248.31%676131951.25%172196816687241441743
12Gulls2110000011921010000068-21100000051420.500111728108011811496782593184123731423479222.22%4175.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
13Icehogs22000000862110000004311100000043141.000814220080118114960825931841236728240600.00%110.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
14Islander622001012226-430200001918-932000100138560.500223860018011811491908259318412317756341293139.68%17288.24%1864170850.59%827171248.31%676131951.25%172196816687241441743
15Little Stars320010001073210010007521100000032161.000101424008011811499782593184123914366713215.38%3166.67%0864170850.59%827171248.31%676131951.25%172196816687241441743
16Marlies2010001045-1100000103211010000013-220.5004590080118114951825931841235725840700.00%4175.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
17Moose211000009631010000023-11100000073420.5009152400801181149788259318412357178527342.86%4250.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
18Penguins3020100069-32020000037-41000100032120.33369150080118114910482593184123103408679111.11%4175.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
19Phantoms201010009901010000034-11000100065120.50091423008011811496382593184123562112402150.00%6183.33%0864170850.59%827171248.31%676131951.25%172196816687241441743
20Punishers330000001385110000007522200000063361.00013243700801181149111825931841238235105414214.29%5180.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
21Rockets211000007701010000024-21100000053220.5007111800801181149718259318412353216528225.00%30100.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
22Senators2020000046-21010000034-11010000012-100.000461000801181149598259318412368168265240.00%40100.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
23Thunderbirds312000001116-52110000089-11010000037-420.33311193000801181149918259318412311427226113215.38%11463.64%0864170850.59%827171248.31%676131951.25%172196816687241441743
24Wolfpack31101000131212100100012751010000015-440.66713193200801181149858259318412311950166010550.00%8187.50%1864170850.59%827171248.31%676131951.25%172196816687241441743
25Wranglers311010001516-11000100065121100000911-240.6671526410080118114910382593184123115418771119.09%4250.00%0864170850.59%827171248.31%676131951.25%172196816687241441743
Total8037310641131930910401815032111681617401916032001511483930.58131953985841801181149261282593184123260587135916833356519.40%1673877.25%3864170850.59%827171248.31%676131951.25%172196816687241441743
_Since Last GM Reset8037310641131930910401815032111681617401916032001511483930.58131953985841801181149261282593184123260587135916833356519.40%1673877.25%3864170850.59%827171248.31%676131951.25%172196816687241441743
_Vs Conference49231903301197200-325129021011111083241110012008692-6560.57119733453101801181149159182593184123162355423810022124119.34%1142677.19%2864170850.59%827171248.31%676131951.25%172196816687241441743
_Vs Division21108002018892-4116400001494901044002003943-4230.5488815023801801181149687825931841236952221284301062018.87%591279.66%1864170850.59%827171248.31%676131951.25%172196816687241441743

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8093W131953985826122605871359168341
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8037316411319309
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4018153211168161
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4019163200151148
Derniers 10 matchs
WLOTWOTL SOWSOL
540001
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
3356519.40%1673877.25%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
82593184123801181149
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
864170850.59%827171248.31%676131951.25%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
172196816687241441743


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
311Comets6Bears2LSommaire du match
517Bears3Comets7LSommaire du match
835Firebirds2Bears6WR1Sommaire du match
1050Bears5Firebirds6LSommaire du match
1260Firebirds6Bears4LR1Sommaire du match
1781Firebirds3Bears6WSommaire du match
2098Bears5Islander0WR1Sommaire du match
22109Islander5Bears2LSommaire du match
26131Penguins4Bears1LSommaire du match
28145Bears5Firebirds4WR1Sommaire du match
29150Bears6Checkers4WSommaire du match
31163Wolfpack5Bears6WXSommaire du match
35184Crunch4Bears9WSommaire du match
39199Bears3Wranglers7LSommaire du match
41208Bears3Islander4LXR1Sommaire du match
42216Phantoms4Bears3LSommaire du match
47237Eagles4Bears3LXSommaire du match
50255Bears1Wolfpack5LSommaire du match
52263Rockets4Bears2LSommaire du match
54272Bears2Punishers1WSommaire du match
56287Checkers6Bears7WSommaire du match
60304Bears7Moose3WSommaire du match
62314Griffins1Bears6WSommaire du match
65328Bears4Condors6LSommaire du match
67341Griffins5Bears3LSommaire du match
70361Bears0Eagles3LSommaire du match
72369Marlies2Bears3WXXSommaire du match
77392Wolfpack2Bears6WSommaire du match
79407Bears3Firebirds1WR1Sommaire du match
81418Moose3Bears2LSommaire du match
83426Bears7Crunch3WSommaire du match
86443Bears3Eagles5LSommaire du match
87446Wranglers5Bears6WXSommaire du match
92469Americans3Bears5WSommaire du match
94486Bears1Barracuda4LSommaire du match
96492Bears5Rockets3WSommaire du match
97499Comets5Bears9WSommaire du match
102521Firebirds4Bears5WR1Sommaire du match
106540Bears3Comets4LXSommaire du match
108548Senators4Bears3LSommaire du match
110562Bears6Phantoms5WXSommaire du match
112574Punishers5Bears7WSommaire du match
116591Bears2Comets6LSommaire du match
117599Icehogs3Bears4WSommaire du match
121618Bears5Admirals4WSommaire du match
122626Crunch5Bears1LSommaire du match
125639Bears1Marlies3LSommaire du match
127651Condors3Bears4WSommaire du match
128658Bears5Firebirds7LR1Sommaire du match
131673Bears4Barracuda2WSommaire du match
132680Canucks7Bears5LSommaire du match
135697Bears3Little Stars2WSommaire du match
136705Firebirds2Bears3WR1Sommaire du match
138721Bears3Thunderbirds7LSommaire du match
141732Penguins3Bears2LSommaire du match
143749Bears3Penguins2WXSommaire du match
145757Little Stars3Bears4WXSommaire du match
147766Bears4Icehogs3WSommaire du match
149782Bears5Gulls1WSommaire du match
150787Comets3Bears5WSommaire du match
154807Bears7Americans2WSommaire du match
155812Little Stars2Bears3WSommaire du match
160834Bears4Punishers2WSommaire du match
161840Islander7Bears2LR1Sommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
165861Admirals4Bears5WSommaire du match
167874Bears2Checkers3LSommaire du match
170886Gulls8Bears6LSommaire du match
173902Bears3Condors2WXSommaire du match
174912Barracuda2Bears4WSommaire du match
179939Condors2Bears1LXSommaire du match
180945Bears1Senators2LSommaire du match
182954Bears5Islander4WR1Sommaire du match
184966Islander6Bears5LXXSommaire du match
185968Bears3Griffins5LSommaire du match
188979Bears3Checkers2WSommaire du match
190993Bears8Canucks5WSommaire du match
1921000Thunderbirds5Bears1LSommaire du match
1931006Bears6Wranglers4WSommaire du match
1941015Bears2Canucks5LSommaire du match
1981031Thunderbirds4Bears7WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets7040
Assistance74,91936,746
Assistance PCT93.65%91.87%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2792 - 93.05% 176,247$7,049,877$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
2,690,295$ 2,165,000$ 2,165,000$ 550,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
10,718$ 2,136,553$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 13,441$ 0$




Bears Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Bears Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Bears Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Bears Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA